Abel means of operator-valued processes
Studia Mathematica, Tome 115 (1995) no. 3, pp. 261-276

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $(X_j)$ be a sequence of independent identically distributed random operators on a Banach space. We obtain necessary and sufficient conditions for the Abel means of $X_n...X_2 X_1$ to belong to Hardy and Lipschitz spaces a.s. We also obtain necessary and sufficient conditions on the Fourier coefficients of random Taylor series with bounded martingale coefficients to belong to Lipschitz and Bergman spaces.
DOI : 10.4064/sm-115-3-261-276
Keywords: Abel means, martingale transforms, subadditive ergodic theory

G. Blower 1

1
@article{10_4064_sm_115_3_261_276,
     author = {G. Blower},
     title = {Abel means of operator-valued processes},
     journal = {Studia Mathematica},
     pages = {261--276},
     publisher = {mathdoc},
     volume = {115},
     number = {3},
     year = {1995},
     doi = {10.4064/sm-115-3-261-276},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-115-3-261-276/}
}
TY  - JOUR
AU  - G. Blower
TI  - Abel means of operator-valued processes
JO  - Studia Mathematica
PY  - 1995
SP  - 261
EP  - 276
VL  - 115
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-115-3-261-276/
DO  - 10.4064/sm-115-3-261-276
LA  - en
ID  - 10_4064_sm_115_3_261_276
ER  - 
%0 Journal Article
%A G. Blower
%T Abel means of operator-valued processes
%J Studia Mathematica
%D 1995
%P 261-276
%V 115
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-115-3-261-276/
%R 10.4064/sm-115-3-261-276
%G en
%F 10_4064_sm_115_3_261_276
G. Blower. Abel means of operator-valued processes. Studia Mathematica, Tome 115 (1995) no. 3, pp. 261-276. doi: 10.4064/sm-115-3-261-276

Cité par Sources :