Abel means of operator-valued processes
    
    
  
  
  
      
      
      
        
Studia Mathematica, Tome 115 (1995) no. 3, pp. 261-276
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
            
              Let $(X_j)$ be a sequence of independent identically distributed random operators on a Banach space. We obtain necessary and sufficient conditions for the Abel means of $X_n...X_2 X_1$ to belong to Hardy and Lipschitz spaces a.s. We also obtain necessary and sufficient conditions on the Fourier coefficients of random Taylor series with bounded martingale coefficients to belong to Lipschitz and Bergman spaces.
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
Abel means, martingale transforms, subadditive ergodic theory
                    
                    
                    
                  
                
                
                
                
                
                Affiliations des auteurs :
                
                
                  
                    
                
                
                
                
                
                
                
                
                
                
              G. Blower 1
@article{10_4064_sm_115_3_261_276,
     author = {G. Blower},
     title = {Abel means of operator-valued processes},
     journal = {Studia Mathematica},
     pages = {261--276},
     publisher = {mathdoc},
     volume = {115},
     number = {3},
     year = {1995},
     doi = {10.4064/sm-115-3-261-276},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-115-3-261-276/}
}
                      
                      
                    G. Blower. Abel means of operator-valued processes. Studia Mathematica, Tome 115 (1995) no. 3, pp. 261-276. doi: 10.4064/sm-115-3-261-276
Cité par Sources :
