Compressible operators and the continuity of homomorphisms from algebras of operators
Studia Mathematica, Tome 115 (1995) no. 3, pp. 251-259

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The notion of a compressible operator on a Banach space, E, derives from automatic continuity arguments. It is related to the notion of a cartesian Banach space. The compressible operators on E form an ideal in ℬ(E) and the automatic continuity proofs depend on showing that this ideal is large. In particular, it is shown that each weakly compact operator on the James' space, J, is compressible, whence it follows that all homomorphisms from ℬ(J) are continuous.
DOI : 10.4064/sm-115-3-251-259

G. A. Willis 1

1
@article{10_4064_sm_115_3_251_259,
     author = {G. A. Willis},
     title = {Compressible operators and the continuity of homomorphisms from algebras of operators},
     journal = {Studia Mathematica},
     pages = {251--259},
     publisher = {mathdoc},
     volume = {115},
     number = {3},
     year = {1995},
     doi = {10.4064/sm-115-3-251-259},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-115-3-251-259/}
}
TY  - JOUR
AU  - G. A. Willis
TI  - Compressible operators and the continuity of homomorphisms from algebras of operators
JO  - Studia Mathematica
PY  - 1995
SP  - 251
EP  - 259
VL  - 115
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-115-3-251-259/
DO  - 10.4064/sm-115-3-251-259
LA  - en
ID  - 10_4064_sm_115_3_251_259
ER  - 
%0 Journal Article
%A G. A. Willis
%T Compressible operators and the continuity of homomorphisms from algebras of operators
%J Studia Mathematica
%D 1995
%P 251-259
%V 115
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-115-3-251-259/
%R 10.4064/sm-115-3-251-259
%G en
%F 10_4064_sm_115_3_251_259
G. A. Willis. Compressible operators and the continuity of homomorphisms from algebras of operators. Studia Mathematica, Tome 115 (1995) no. 3, pp. 251-259. doi: 10.4064/sm-115-3-251-259

Cité par Sources :