Compressible operators and the continuity of homomorphisms from algebras of operators
Studia Mathematica, Tome 115 (1995) no. 3, pp. 251-259
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
The notion of a compressible operator on a Banach space, E, derives from automatic continuity arguments. It is related to the notion of a cartesian Banach space. The compressible operators on E form an ideal in ℬ(E) and the automatic continuity proofs depend on showing that this ideal is large. In particular, it is shown that each weakly compact operator on the James' space, J, is compressible, whence it follows that all homomorphisms from ℬ(J) are continuous.
@article{10_4064_sm_115_3_251_259,
author = {G. A. Willis},
title = {Compressible operators and the continuity of homomorphisms from algebras of operators},
journal = {Studia Mathematica},
pages = {251--259},
publisher = {mathdoc},
volume = {115},
number = {3},
year = {1995},
doi = {10.4064/sm-115-3-251-259},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-115-3-251-259/}
}
TY - JOUR AU - G. A. Willis TI - Compressible operators and the continuity of homomorphisms from algebras of operators JO - Studia Mathematica PY - 1995 SP - 251 EP - 259 VL - 115 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-115-3-251-259/ DO - 10.4064/sm-115-3-251-259 LA - en ID - 10_4064_sm_115_3_251_259 ER -
%0 Journal Article %A G. A. Willis %T Compressible operators and the continuity of homomorphisms from algebras of operators %J Studia Mathematica %D 1995 %P 251-259 %V 115 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm-115-3-251-259/ %R 10.4064/sm-115-3-251-259 %G en %F 10_4064_sm_115_3_251_259
G. A. Willis. Compressible operators and the continuity of homomorphisms from algebras of operators. Studia Mathematica, Tome 115 (1995) no. 3, pp. 251-259. doi: 10.4064/sm-115-3-251-259
Cité par Sources :