Reproducing properties and $L^p$-estimates for Bergman projections in Siegel domains of type II
Studia Mathematica, Tome 115 (1995) no. 3, pp. 219-239

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

On homogeneous Siegel domains of type II, we prove that under certain conditions, the subspace of a weighted $L^p$-space (0 p ∞) consisting of holomorphic functions is reproduced by a weighted Bergman kernel. We also obtain some $L^p$-estimates for weighted Bergman projections. The proofs rely on a generalization of the Plancherel-Gindikin formula for the Bergman space $A^2$.
DOI : 10.4064/sm-115-3-219-239

David Békollé 1

1
@article{10_4064_sm_115_3_219_239,
     author = {David B\'ekoll\'e},
     title = {Reproducing properties and $L^p$-estimates for {Bergman} projections in {Siegel} domains of type {II}},
     journal = {Studia Mathematica},
     pages = {219--239},
     publisher = {mathdoc},
     volume = {115},
     number = {3},
     year = {1995},
     doi = {10.4064/sm-115-3-219-239},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-115-3-219-239/}
}
TY  - JOUR
AU  - David Békollé
TI  - Reproducing properties and $L^p$-estimates for Bergman projections in Siegel domains of type II
JO  - Studia Mathematica
PY  - 1995
SP  - 219
EP  - 239
VL  - 115
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-115-3-219-239/
DO  - 10.4064/sm-115-3-219-239
LA  - en
ID  - 10_4064_sm_115_3_219_239
ER  - 
%0 Journal Article
%A David Békollé
%T Reproducing properties and $L^p$-estimates for Bergman projections in Siegel domains of type II
%J Studia Mathematica
%D 1995
%P 219-239
%V 115
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-115-3-219-239/
%R 10.4064/sm-115-3-219-239
%G en
%F 10_4064_sm_115_3_219_239
David Békollé. Reproducing properties and $L^p$-estimates for Bergman projections in Siegel domains of type II. Studia Mathematica, Tome 115 (1995) no. 3, pp. 219-239. doi: 10.4064/sm-115-3-219-239

Cité par Sources :