Reproducing properties and $L^p$-estimates for Bergman projections in Siegel domains of type II
Studia Mathematica, Tome 115 (1995) no. 3, pp. 219-239
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
On homogeneous Siegel domains of type II, we prove that under certain conditions, the subspace of a weighted $L^p$-space (0 p ∞) consisting of holomorphic functions is reproduced by a weighted Bergman kernel. We also obtain some $L^p$-estimates for weighted Bergman projections. The proofs rely on a generalization of the Plancherel-Gindikin formula for the Bergman space $A^2$.
@article{10_4064_sm_115_3_219_239,
author = {David B\'ekoll\'e},
title = {Reproducing properties and $L^p$-estimates for {Bergman} projections in {Siegel} domains of type {II}},
journal = {Studia Mathematica},
pages = {219--239},
publisher = {mathdoc},
volume = {115},
number = {3},
year = {1995},
doi = {10.4064/sm-115-3-219-239},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-115-3-219-239/}
}
TY - JOUR AU - David Békollé TI - Reproducing properties and $L^p$-estimates for Bergman projections in Siegel domains of type II JO - Studia Mathematica PY - 1995 SP - 219 EP - 239 VL - 115 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-115-3-219-239/ DO - 10.4064/sm-115-3-219-239 LA - en ID - 10_4064_sm_115_3_219_239 ER -
%0 Journal Article %A David Békollé %T Reproducing properties and $L^p$-estimates for Bergman projections in Siegel domains of type II %J Studia Mathematica %D 1995 %P 219-239 %V 115 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm-115-3-219-239/ %R 10.4064/sm-115-3-219-239 %G en %F 10_4064_sm_115_3_219_239
David Békollé. Reproducing properties and $L^p$-estimates for Bergman projections in Siegel domains of type II. Studia Mathematica, Tome 115 (1995) no. 3, pp. 219-239. doi: 10.4064/sm-115-3-219-239
Cité par Sources :