Reproducing properties and $L^p$-estimates for Bergman projections in Siegel domains of type II
Studia Mathematica, Tome 115 (1995) no. 3, pp. 219-239
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
On homogeneous Siegel domains of type II, we prove that under certain conditions, the subspace of a weighted $L^p$-space (0 p ∞) consisting of holomorphic functions is reproduced by a weighted Bergman kernel. We also obtain some $L^p$-estimates for weighted Bergman projections. The proofs rely on a generalization of the Plancherel-Gindikin formula for the Bergman space $A^2$.
@article{10_4064_sm_115_3_219_239,
author = {David B\'ekoll\'e},
title = {Reproducing properties and $L^p$-estimates for {Bergman} projections in {Siegel} domains of type {II}},
journal = {Studia Mathematica},
pages = {219--239},
year = {1995},
volume = {115},
number = {3},
doi = {10.4064/sm-115-3-219-239},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-115-3-219-239/}
}
TY - JOUR AU - David Békollé TI - Reproducing properties and $L^p$-estimates for Bergman projections in Siegel domains of type II JO - Studia Mathematica PY - 1995 SP - 219 EP - 239 VL - 115 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-115-3-219-239/ DO - 10.4064/sm-115-3-219-239 LA - en ID - 10_4064_sm_115_3_219_239 ER -
%0 Journal Article %A David Békollé %T Reproducing properties and $L^p$-estimates for Bergman projections in Siegel domains of type II %J Studia Mathematica %D 1995 %P 219-239 %V 115 %N 3 %U http://geodesic.mathdoc.fr/articles/10.4064/sm-115-3-219-239/ %R 10.4064/sm-115-3-219-239 %G en %F 10_4064_sm_115_3_219_239
David Békollé. Reproducing properties and $L^p$-estimates for Bergman projections in Siegel domains of type II. Studia Mathematica, Tome 115 (1995) no. 3, pp. 219-239. doi: 10.4064/sm-115-3-219-239
Cité par Sources :