Topologies on the space of ideals of a Banach algebra
Studia Mathematica, Tome 115 (1995) no. 2, pp. 189-205 Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

Some topologies on the space Id(A) of two-sided and closed ideals of a Banach algebra are introduced and investigated. One of the topologies, namely $τ_∞$, coincides with the so-called strong topology if A is a C*-algebra. We prove that for a separable Banach algebra $τ_∞$ coincides with a weaker topology when restricted to the space Min-Primal(A) of minimal closed primal ideals and that Min-Primal(A) is a Polish space if $τ_∞$ is Hausdorff; this generalizes results from [1] and [5]. All subspaces of Id(A) with the relative hull kernel topology turn out to be separable Lindelöf spaces if A is separable, which improves results from [14].
@article{10_4064_sm_115_2_189_205,
     author = {Ferdinand Beckhoff},
     title = {Topologies on the space of ideals of a {Banach} algebra},
     journal = {Studia Mathematica},
     pages = {189--205},
     year = {1995},
     volume = {115},
     number = {2},
     doi = {10.4064/sm-115-2-189-205},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-115-2-189-205/}
}
TY  - JOUR
AU  - Ferdinand Beckhoff
TI  - Topologies on the space of ideals of a Banach algebra
JO  - Studia Mathematica
PY  - 1995
SP  - 189
EP  - 205
VL  - 115
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-115-2-189-205/
DO  - 10.4064/sm-115-2-189-205
LA  - en
ID  - 10_4064_sm_115_2_189_205
ER  - 
%0 Journal Article
%A Ferdinand Beckhoff
%T Topologies on the space of ideals of a Banach algebra
%J Studia Mathematica
%D 1995
%P 189-205
%V 115
%N 2
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-115-2-189-205/
%R 10.4064/sm-115-2-189-205
%G en
%F 10_4064_sm_115_2_189_205
Ferdinand Beckhoff. Topologies on the space of ideals of a Banach algebra. Studia Mathematica, Tome 115 (1995) no. 2, pp. 189-205. doi: 10.4064/sm-115-2-189-205

Cité par Sources :