Topologies on the space of ideals of a Banach algebra
Studia Mathematica, Tome 115 (1995) no. 2, pp. 189-205
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Some topologies on the space Id(A) of two-sided and closed ideals of a Banach algebra are introduced and investigated. One of the topologies, namely $τ_∞$, coincides with the so-called strong topology if A is a C*-algebra. We prove that for a separable Banach algebra $τ_∞$ coincides with a weaker topology when restricted to the space Min-Primal(A) of minimal closed primal ideals and that Min-Primal(A) is a Polish space if $τ_∞$ is Hausdorff; this generalizes results from [1] and [5]. All subspaces of Id(A) with the relative hull kernel topology turn out to be separable Lindelöf spaces if A is separable, which improves results from [14].
@article{10_4064_sm_115_2_189_205,
author = {Ferdinand Beckhoff},
title = {Topologies on the space of ideals of a {Banach} algebra},
journal = {Studia Mathematica},
pages = {189--205},
year = {1995},
volume = {115},
number = {2},
doi = {10.4064/sm-115-2-189-205},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-115-2-189-205/}
}
TY - JOUR AU - Ferdinand Beckhoff TI - Topologies on the space of ideals of a Banach algebra JO - Studia Mathematica PY - 1995 SP - 189 EP - 205 VL - 115 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-115-2-189-205/ DO - 10.4064/sm-115-2-189-205 LA - en ID - 10_4064_sm_115_2_189_205 ER -
Ferdinand Beckhoff. Topologies on the space of ideals of a Banach algebra. Studia Mathematica, Tome 115 (1995) no. 2, pp. 189-205. doi: 10.4064/sm-115-2-189-205
Cité par Sources :