Double exponential integrability, Bessel potentials and embedding theorems
Studia Mathematica, Tome 115 (1995) no. 2, pp. 151-181 Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

This paper is a continuation of [5] and provides necessary and sufficient conditions for double exponential integrability of the Bessel potential of functions from suitable (generalized) Lorentz-Zygmund spaces. These results are used to establish embedding theorems for Bessel potential spaces which extend Trudinger's result.
DOI : 10.4064/sm-115-2-151-181
Keywords: Bessel potential, Riesz potential, generalized Lorentz-Zygmund spaces, exponential integrability, Hardy inequality, Orlicz spaces, Bessel potential spaces
@article{10_4064_sm_115_2_151_181,
     author = {David E. Edmunds and   and  },
     title = {Double exponential integrability, {Bessel} potentials and embedding theorems},
     journal = {Studia Mathematica},
     pages = {151--181},
     year = {1995},
     volume = {115},
     number = {2},
     doi = {10.4064/sm-115-2-151-181},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-115-2-151-181/}
}
TY  - JOUR
AU  - David E. Edmunds
AU  -  
AU  -  
TI  - Double exponential integrability, Bessel potentials and embedding theorems
JO  - Studia Mathematica
PY  - 1995
SP  - 151
EP  - 181
VL  - 115
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-115-2-151-181/
DO  - 10.4064/sm-115-2-151-181
LA  - en
ID  - 10_4064_sm_115_2_151_181
ER  - 
%0 Journal Article
%A David E. Edmunds
%A  
%A  
%T Double exponential integrability, Bessel potentials and embedding theorems
%J Studia Mathematica
%D 1995
%P 151-181
%V 115
%N 2
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-115-2-151-181/
%R 10.4064/sm-115-2-151-181
%G en
%F 10_4064_sm_115_2_151_181
David E. Edmunds;  ;  . Double exponential integrability, Bessel potentials and embedding theorems. Studia Mathematica, Tome 115 (1995) no. 2, pp. 151-181. doi: 10.4064/sm-115-2-151-181

Cité par Sources :