$L^p$ weighted inequalities for the dyadic square function
Studia Mathematica, Tome 115 (1995) no. 2, pp. 135-149
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We prove that $ʃ(S_df)^pVdx ≤ C_{p,n}ʃ |f|^p M_d^{([p/2]+2)}Vdx$, where $S_d$ is the dyadic square function, $M_d^{(k)}$ is the k-fold application of the dyadic Hardy-Littlewood maximal function and p > 2.
Keywords:
dyadic square function, dyadic maximal function, weighted inequality
@article{10_4064_sm_115_2_135_149,
author = {Akihito Uchiyama},
title = {$L^p$ weighted inequalities for the dyadic square function},
journal = {Studia Mathematica},
pages = {135--149},
year = {1995},
volume = {115},
number = {2},
doi = {10.4064/sm-115-2-135-149},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-115-2-135-149/}
}
TY - JOUR AU - Akihito Uchiyama TI - $L^p$ weighted inequalities for the dyadic square function JO - Studia Mathematica PY - 1995 SP - 135 EP - 149 VL - 115 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-115-2-135-149/ DO - 10.4064/sm-115-2-135-149 LA - en ID - 10_4064_sm_115_2_135_149 ER -
Akihito Uchiyama. $L^p$ weighted inequalities for the dyadic square function. Studia Mathematica, Tome 115 (1995) no. 2, pp. 135-149. doi: 10.4064/sm-115-2-135-149
Cité par Sources :