$L^p$ weighted inequalities for the dyadic square function
Studia Mathematica, Tome 115 (1995) no. 2, pp. 135-149 Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

We prove that $ʃ(S_df)^pVdx ≤ C_{p,n}ʃ |f|^p M_d^{([p/2]+2)}Vdx$, where $S_d$ is the dyadic square function, $M_d^{(k)}$ is the k-fold application of the dyadic Hardy-Littlewood maximal function and p > 2.
DOI : 10.4064/sm-115-2-135-149
Keywords: dyadic square function, dyadic maximal function, weighted inequality
@article{10_4064_sm_115_2_135_149,
     author = {Akihito Uchiyama},
     title = {$L^p$ weighted inequalities for the dyadic square function},
     journal = {Studia Mathematica},
     pages = {135--149},
     year = {1995},
     volume = {115},
     number = {2},
     doi = {10.4064/sm-115-2-135-149},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-115-2-135-149/}
}
TY  - JOUR
AU  - Akihito Uchiyama
TI  - $L^p$ weighted inequalities for the dyadic square function
JO  - Studia Mathematica
PY  - 1995
SP  - 135
EP  - 149
VL  - 115
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-115-2-135-149/
DO  - 10.4064/sm-115-2-135-149
LA  - en
ID  - 10_4064_sm_115_2_135_149
ER  - 
%0 Journal Article
%A Akihito Uchiyama
%T $L^p$ weighted inequalities for the dyadic square function
%J Studia Mathematica
%D 1995
%P 135-149
%V 115
%N 2
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-115-2-135-149/
%R 10.4064/sm-115-2-135-149
%G en
%F 10_4064_sm_115_2_135_149
Akihito Uchiyama. $L^p$ weighted inequalities for the dyadic square function. Studia Mathematica, Tome 115 (1995) no. 2, pp. 135-149. doi: 10.4064/sm-115-2-135-149

Cité par Sources :