Local polynomials are polynomials
Studia Mathematica, Tome 115 (1995) no. 2, pp. 105-107 Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

We prove that a function f is a polynomial if G◦f is a polynomial for every bounded linear functional G. We also show that an operator-valued function is a polynomial if it is locally a polynomial.
@article{10_4064_sm_115_2_105_107,
     author = {C. K. Fong},
     title = {Local polynomials are polynomials},
     journal = {Studia Mathematica},
     pages = {105--107},
     year = {1995},
     volume = {115},
     number = {2},
     doi = {10.4064/sm-115-2-105-107},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-115-2-105-107/}
}
TY  - JOUR
AU  - C. K. Fong
TI  - Local polynomials are polynomials
JO  - Studia Mathematica
PY  - 1995
SP  - 105
EP  - 107
VL  - 115
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-115-2-105-107/
DO  - 10.4064/sm-115-2-105-107
LA  - en
ID  - 10_4064_sm_115_2_105_107
ER  - 
%0 Journal Article
%A C. K. Fong
%T Local polynomials are polynomials
%J Studia Mathematica
%D 1995
%P 105-107
%V 115
%N 2
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-115-2-105-107/
%R 10.4064/sm-115-2-105-107
%G en
%F 10_4064_sm_115_2_105_107
C. K. Fong. Local polynomials are polynomials. Studia Mathematica, Tome 115 (1995) no. 2, pp. 105-107. doi: 10.4064/sm-115-2-105-107

Cité par Sources :