A lifting theorem for locally convex subspaces of $L_0$
Studia Mathematica, Tome 115 (1995) no. 1, pp. 73-85
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove that for every closed locally convex subspace E of $L_0$ and for any continuous linear operator T from $L_0$ to $L_0/E$ there is a continuous linear operator S from $L_0$ to $L_0$ such that T = QS where Q is the quotient map from $L_0$ to $L_0/E$.
@article{10_4064_sm_115_1_73_85,
author = {R. G. Faber},
title = {A lifting theorem for locally convex subspaces of $L_0$},
journal = {Studia Mathematica},
pages = {73--85},
publisher = {mathdoc},
volume = {115},
number = {1},
year = {1995},
doi = {10.4064/sm-115-1-73-85},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-115-1-73-85/}
}
TY - JOUR AU - R. G. Faber TI - A lifting theorem for locally convex subspaces of $L_0$ JO - Studia Mathematica PY - 1995 SP - 73 EP - 85 VL - 115 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-115-1-73-85/ DO - 10.4064/sm-115-1-73-85 LA - en ID - 10_4064_sm_115_1_73_85 ER -
R. G. Faber. A lifting theorem for locally convex subspaces of $L_0$. Studia Mathematica, Tome 115 (1995) no. 1, pp. 73-85. doi: 10.4064/sm-115-1-73-85
Cité par Sources :