A lifting theorem for locally convex subspaces of $L_0$
Studia Mathematica, Tome 115 (1995) no. 1, pp. 73-85

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove that for every closed locally convex subspace E of $L_0$ and for any continuous linear operator T from $L_0$ to $L_0/E$ there is a continuous linear operator S from $L_0$ to $L_0$ such that T = QS where Q is the quotient map from $L_0$ to $L_0/E$.
DOI : 10.4064/sm-115-1-73-85

R. G. Faber 1

1
@article{10_4064_sm_115_1_73_85,
     author = {R. G. Faber},
     title = {A lifting theorem for locally convex subspaces of $L_0$},
     journal = {Studia Mathematica},
     pages = {73--85},
     publisher = {mathdoc},
     volume = {115},
     number = {1},
     year = {1995},
     doi = {10.4064/sm-115-1-73-85},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-115-1-73-85/}
}
TY  - JOUR
AU  - R. G. Faber
TI  - A lifting theorem for locally convex subspaces of $L_0$
JO  - Studia Mathematica
PY  - 1995
SP  - 73
EP  - 85
VL  - 115
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-115-1-73-85/
DO  - 10.4064/sm-115-1-73-85
LA  - en
ID  - 10_4064_sm_115_1_73_85
ER  - 
%0 Journal Article
%A R. G. Faber
%T A lifting theorem for locally convex subspaces of $L_0$
%J Studia Mathematica
%D 1995
%P 73-85
%V 115
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-115-1-73-85/
%R 10.4064/sm-115-1-73-85
%G en
%F 10_4064_sm_115_1_73_85
R. G. Faber. A lifting theorem for locally convex subspaces of $L_0$. Studia Mathematica, Tome 115 (1995) no. 1, pp. 73-85. doi: 10.4064/sm-115-1-73-85

Cité par Sources :