Analyticity of transition semigroups and closability of bilinear forms in Hilbert spaces
Studia Mathematica, Tome 115 (1995) no. 1, pp. 53-71
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

We consider a semigroup acting on real-valued functions defined in a Hilbert space H, arising as a transition semigroup of a given stochastic process in H. We find sufficient conditions for analyticity of the semigroup in the $L^2(μ)$ space, where μ is a gaussian measure in H, intrinsically related to the process. We show that the infinitesimal generator of the semigroup is associated with a bilinear closed coercive form in $L^2(μ)$. A closability criterion for such forms is presented. Examples are also given.
@article{10_4064_sm_115_1_53_71,
     author = {Marco Fuhrman},
     title = {Analyticity of transition semigroups and closability of bilinear forms in {Hilbert} spaces},
     journal = {Studia Mathematica},
     pages = {53--71},
     year = {1995},
     volume = {115},
     number = {1},
     doi = {10.4064/sm-115-1-53-71},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-115-1-53-71/}
}
TY  - JOUR
AU  - Marco Fuhrman
TI  - Analyticity of transition semigroups and closability of bilinear forms in Hilbert spaces
JO  - Studia Mathematica
PY  - 1995
SP  - 53
EP  - 71
VL  - 115
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-115-1-53-71/
DO  - 10.4064/sm-115-1-53-71
LA  - en
ID  - 10_4064_sm_115_1_53_71
ER  - 
%0 Journal Article
%A Marco Fuhrman
%T Analyticity of transition semigroups and closability of bilinear forms in Hilbert spaces
%J Studia Mathematica
%D 1995
%P 53-71
%V 115
%N 1
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-115-1-53-71/
%R 10.4064/sm-115-1-53-71
%G en
%F 10_4064_sm_115_1_53_71
Marco Fuhrman. Analyticity of transition semigroups and closability of bilinear forms in Hilbert spaces. Studia Mathematica, Tome 115 (1995) no. 1, pp. 53-71. doi: 10.4064/sm-115-1-53-71

Cité par Sources :