Two-weight mixed ф-inequalities for the one-sided maximal function
Studia Mathematica, Tome 115 (1995) no. 1, pp. 1-22
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Suppose u, v, w, and t are weight functions on an appropriate measure space (X,μ), and $Φ_1$, $Φ_2$ are Young functions satisfying a certain relationship. Let T denote an operator to be specified below. The main purpose of this paper is to characterize (i) the strong type mixed Φ-inequality $Φ^{-1}_{2}(ʃ_{X} Φ_{2}(T(fv))wdμ) ≤ Φ^{-1}_{1} (ʃ_X Φ_{1}(Cf)vdμ)$, (ii) the weak type mixed Φ-inequality $Φ^{-1}_2 (ʃ_{|Tf|>λ}$ Φ_{2}(λw)tdμ) ≤ Φ^{-1}_{1} (ʃ_{X} Φ_{1}(Cfu)vdμ)$ and (iii) the extra-weak type mixed Φ-inequality $|{x ∈ X : |Tf(x)| > λ}|_{wdμ} ≤ Φ_{2}Φ^{-1}_{1} (ʃ_{X} Φ_{1}(Cfu/λ)vdμ)$, when T is the one-sided maximal function $M^{+}_{g}$; as well to characterize (iii) for the Fefferman-Stein type fractional maximal operator and the Hardy-type operator.
Keywords:
Young function, one-sided maximal function, Fefferman-Stein type fractional operator, Hardy-type operator
Affiliations des auteurs :
Qinsheng Lai 1
@article{10_4064_sm_115_1_1_22,
author = {Qinsheng Lai},
title = {Two-weight mixed {\cyrf}-inequalities for the one-sided maximal function},
journal = {Studia Mathematica},
pages = {1--22},
year = {1995},
volume = {115},
number = {1},
doi = {10.4064/sm-115-1-1-22},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-115-1-1-22/}
}
Qinsheng Lai. Two-weight mixed ф-inequalities for the one-sided maximal function. Studia Mathematica, Tome 115 (1995) no. 1, pp. 1-22. doi: 10.4064/sm-115-1-1-22
Cité par Sources :