On reduction of two-parameter prediction problems
Studia Mathematica, Tome 114 (1995) no. 2, pp. 147-158

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We present a general method for the extension of results about linear prediction for q-variate weakly stationary processes on a separable locally compact abelian group $G_2$ (whose dual is a Polish space) with known values of the processes on a separable subset $S_2 ⊆ G_2$ to results for weakly stationary processes on $G_1 × G_2$ with observed values on $G_1 × S_2$. In particular, the method is applied to obtain new proofs of some well-known results of Ze Pei Jiang.
DOI : 10.4064/sm-114-2-147-158

J. Friedrich 1

1
@article{10_4064_sm_114_2_147_158,
     author = {J. Friedrich},
     title = {On reduction of two-parameter prediction problems},
     journal = {Studia Mathematica},
     pages = {147--158},
     publisher = {mathdoc},
     volume = {114},
     number = {2},
     year = {1995},
     doi = {10.4064/sm-114-2-147-158},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-114-2-147-158/}
}
TY  - JOUR
AU  - J. Friedrich
TI  - On reduction of two-parameter prediction problems
JO  - Studia Mathematica
PY  - 1995
SP  - 147
EP  - 158
VL  - 114
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-114-2-147-158/
DO  - 10.4064/sm-114-2-147-158
LA  - en
ID  - 10_4064_sm_114_2_147_158
ER  - 
%0 Journal Article
%A J. Friedrich
%T On reduction of two-parameter prediction problems
%J Studia Mathematica
%D 1995
%P 147-158
%V 114
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-114-2-147-158/
%R 10.4064/sm-114-2-147-158
%G en
%F 10_4064_sm_114_2_147_158
J. Friedrich. On reduction of two-parameter prediction problems. Studia Mathematica, Tome 114 (1995) no. 2, pp. 147-158. doi: 10.4064/sm-114-2-147-158

Cité par Sources :