Trivial bundles of spaces of probability measures and countable-dimensionality
Studia Mathematica, Tome 114 (1995) no. 1, pp. 1-11
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
The probability measure functor P carries open continuous mappings $f: X onto → Y$ of compact metric spaces into Q-bundles provided Y is countable-dimensional and all fibers $f^{-1}(y)$ are infinite. This answers a question raised by V. Fedorchuk.
Keywords:
countable-dimensional space, open mapping, set-valued mapping, selection, t(A)-approximate section
Affiliations des auteurs :
Valentin G. Gutev 1
@article{10_4064_sm_114_1_1_11,
author = {Valentin G. Gutev},
title = {Trivial bundles of spaces of probability measures and countable-dimensionality},
journal = {Studia Mathematica},
pages = {1--11},
publisher = {mathdoc},
volume = {114},
number = {1},
year = {1995},
doi = {10.4064/sm-114-1-1-11},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-114-1-1-11/}
}
TY - JOUR AU - Valentin G. Gutev TI - Trivial bundles of spaces of probability measures and countable-dimensionality JO - Studia Mathematica PY - 1995 SP - 1 EP - 11 VL - 114 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-114-1-1-11/ DO - 10.4064/sm-114-1-1-11 LA - en ID - 10_4064_sm_114_1_1_11 ER -
%0 Journal Article %A Valentin G. Gutev %T Trivial bundles of spaces of probability measures and countable-dimensionality %J Studia Mathematica %D 1995 %P 1-11 %V 114 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm-114-1-1-11/ %R 10.4064/sm-114-1-1-11 %G en %F 10_4064_sm_114_1_1_11
Valentin G. Gutev. Trivial bundles of spaces of probability measures and countable-dimensionality. Studia Mathematica, Tome 114 (1995) no. 1, pp. 1-11. doi: 10.4064/sm-114-1-1-11
Cité par Sources :