Trivial bundles of spaces of probability measures and countable-dimensionality
Studia Mathematica, Tome 114 (1995) no. 1, pp. 1-11

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The probability measure functor P carries open continuous mappings $f: X onto → Y$ of compact metric spaces into Q-bundles provided Y is countable-dimensional and all fibers $f^{-1}(y)$ are infinite. This answers a question raised by V. Fedorchuk.
DOI : 10.4064/sm-114-1-1-11
Keywords: countable-dimensional space, open mapping, set-valued mapping, selection, t(A)-approximate section

Valentin G. Gutev 1

1
@article{10_4064_sm_114_1_1_11,
     author = {Valentin G. Gutev},
     title = {Trivial bundles of spaces of probability measures and countable-dimensionality},
     journal = {Studia Mathematica},
     pages = {1--11},
     publisher = {mathdoc},
     volume = {114},
     number = {1},
     year = {1995},
     doi = {10.4064/sm-114-1-1-11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-114-1-1-11/}
}
TY  - JOUR
AU  - Valentin G. Gutev
TI  - Trivial bundles of spaces of probability measures and countable-dimensionality
JO  - Studia Mathematica
PY  - 1995
SP  - 1
EP  - 11
VL  - 114
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-114-1-1-11/
DO  - 10.4064/sm-114-1-1-11
LA  - en
ID  - 10_4064_sm_114_1_1_11
ER  - 
%0 Journal Article
%A Valentin G. Gutev
%T Trivial bundles of spaces of probability measures and countable-dimensionality
%J Studia Mathematica
%D 1995
%P 1-11
%V 114
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-114-1-1-11/
%R 10.4064/sm-114-1-1-11
%G en
%F 10_4064_sm_114_1_1_11
Valentin G. Gutev. Trivial bundles of spaces of probability measures and countable-dimensionality. Studia Mathematica, Tome 114 (1995) no. 1, pp. 1-11. doi: 10.4064/sm-114-1-1-11

Cité par Sources :