Representing non-weakly compact operators
Studia Mathematica, Tome 113 (1995) no. 3, pp. 265-282

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

For each S ∈ L(E) (with E a Banach space) the operator R(S) ∈ L(E**/E) is defined by R(S)(x** + E) = S**x** + E(x** ∈ E**). We study mapping properties of the correspondence S → R(S), which provides a representation R of the weak Calkin algebra L(E)/W(E) (here W(E) denotes the weakly compact operators on E). Our results display strongly varying behaviour of R. For instance, there are no non-zero compact operators in Im(R) in the case of $L^1$ and C(0,1), but R(L(E)/W(E)) identifies isometrically with the class of lattice regular operators on $ℓ^2$ for $E = ℓ^2(J)$ (here J is James' space). Accordingly, there is an operator $T ∈ L(ℓ^2(J))$ such that R(T) is invertible but T fails to be invertible modulo $W(ℓ^2(J))$.
DOI : 10.4064/sm-113-3-265-282

Manuel González 1

1
@article{10_4064_sm_113_3_265_282,
     author = {Manuel Gonz\'alez},
     title = {Representing non-weakly compact operators},
     journal = {Studia Mathematica},
     pages = {265--282},
     publisher = {mathdoc},
     volume = {113},
     number = {3},
     year = {1995},
     doi = {10.4064/sm-113-3-265-282},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-113-3-265-282/}
}
TY  - JOUR
AU  - Manuel González
TI  - Representing non-weakly compact operators
JO  - Studia Mathematica
PY  - 1995
SP  - 265
EP  - 282
VL  - 113
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-113-3-265-282/
DO  - 10.4064/sm-113-3-265-282
LA  - en
ID  - 10_4064_sm_113_3_265_282
ER  - 
%0 Journal Article
%A Manuel González
%T Representing non-weakly compact operators
%J Studia Mathematica
%D 1995
%P 265-282
%V 113
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-113-3-265-282/
%R 10.4064/sm-113-3-265-282
%G en
%F 10_4064_sm_113_3_265_282
Manuel González. Representing non-weakly compact operators. Studia Mathematica, Tome 113 (1995) no. 3, pp. 265-282. doi: 10.4064/sm-113-3-265-282

Cité par Sources :