Singularities and normal forms of generic 2-distributions on 3-manifolds
    
    
  
  
  
      
      
      
        
Studia Mathematica, Tome 113 (1995) no. 3, pp. 223-248
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
            
              We give a complete classification of germs of generic 2-distributions on 3-manifolds. By a 2-distribution we mean either a module generated by two vector fields (at singular points its dimension decreases) or a Pfaff equation, i.e. a module generated by a differential 1-form (at singular points the dimension of its kernel increases).
            
            
            
          
        
      @article{10_4064_sm_113_3_223_248,
     author = {B. Jakubczyk},
     title = {Singularities and normal forms of generic 2-distributions on 3-manifolds},
     journal = {Studia Mathematica},
     pages = {223--248},
     publisher = {mathdoc},
     volume = {113},
     number = {3},
     year = {1995},
     doi = {10.4064/sm-113-3-223-248},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-113-3-223-248/}
}
                      
                      
                    TY - JOUR AU - B. Jakubczyk TI - Singularities and normal forms of generic 2-distributions on 3-manifolds JO - Studia Mathematica PY - 1995 SP - 223 EP - 248 VL - 113 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-113-3-223-248/ DO - 10.4064/sm-113-3-223-248 LA - en ID - 10_4064_sm_113_3_223_248 ER -
%0 Journal Article %A B. Jakubczyk %T Singularities and normal forms of generic 2-distributions on 3-manifolds %J Studia Mathematica %D 1995 %P 223-248 %V 113 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm-113-3-223-248/ %R 10.4064/sm-113-3-223-248 %G en %F 10_4064_sm_113_3_223_248
B. Jakubczyk. Singularities and normal forms of generic 2-distributions on 3-manifolds. Studia Mathematica, Tome 113 (1995) no. 3, pp. 223-248. doi: 10.4064/sm-113-3-223-248
Cité par Sources :
