A sharp correction theorem
Studia Mathematica, Tome 113 (1995) no. 2, pp. 177-196
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Under certain conditions on a function space X, it is proved that for every $L^∞$-function f with $∥f∥_{∞} ≤ 1$ one can find a function φ, 0 ≤ φ ≤ 1, such that φf ∈ X, $mes{φ ≠ 1} ≤ ɛ∥f∥_1$ and $∥φf∥_X ≤ const(1 + log ɛ^{-1})$. For X one can take, e.g., the space of functions with uniformly bounded Fourier sums, or the space of $L^∞$-functions on $ℝ^n$ whose convolutions with a fixed finite collection of Calderón-Zygmund kernels are also bounded.
@article{10_4064_sm_113_2_177_196,
author = {S. V. Kisliakov},
title = {A sharp correction theorem},
journal = {Studia Mathematica},
pages = {177--196},
publisher = {mathdoc},
volume = {113},
number = {2},
year = {1995},
doi = {10.4064/sm-113-2-177-196},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-113-2-177-196/}
}
S. V. Kisliakov. A sharp correction theorem. Studia Mathematica, Tome 113 (1995) no. 2, pp. 177-196. doi: 10.4064/sm-113-2-177-196
Cité par Sources :