A sharp correction theorem
Studia Mathematica, Tome 113 (1995) no. 2, pp. 177-196

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Under certain conditions on a function space X, it is proved that for every $L^∞$-function f with $∥f∥_{∞} ≤ 1$ one can find a function φ, 0 ≤ φ ≤ 1, such that φf ∈ X, $mes{φ ≠ 1} ≤ ɛ∥f∥_1$ and $∥φf∥_X ≤ const(1 + log ɛ^{-1})$. For X one can take, e.g., the space of functions with uniformly bounded Fourier sums, or the space of $L^∞$-functions on $ℝ^n$ whose convolutions with a fixed finite collection of Calderón-Zygmund kernels are also bounded.
DOI : 10.4064/sm-113-2-177-196

S. V. Kisliakov 1

1
@article{10_4064_sm_113_2_177_196,
     author = {S. V. Kisliakov},
     title = {A sharp correction theorem},
     journal = {Studia Mathematica},
     pages = {177--196},
     publisher = {mathdoc},
     volume = {113},
     number = {2},
     year = {1995},
     doi = {10.4064/sm-113-2-177-196},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-113-2-177-196/}
}
TY  - JOUR
AU  - S. V. Kisliakov
TI  - A sharp correction theorem
JO  - Studia Mathematica
PY  - 1995
SP  - 177
EP  - 196
VL  - 113
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-113-2-177-196/
DO  - 10.4064/sm-113-2-177-196
LA  - en
ID  - 10_4064_sm_113_2_177_196
ER  - 
%0 Journal Article
%A S. V. Kisliakov
%T A sharp correction theorem
%J Studia Mathematica
%D 1995
%P 177-196
%V 113
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-113-2-177-196/
%R 10.4064/sm-113-2-177-196
%G en
%F 10_4064_sm_113_2_177_196
S. V. Kisliakov. A sharp correction theorem. Studia Mathematica, Tome 113 (1995) no. 2, pp. 177-196. doi: 10.4064/sm-113-2-177-196

Cité par Sources :