The stability radius of an operator of Saphar type
Studia Mathematica, Tome 113 (1995) no. 2, pp. 169-175

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

A bounded linear operator T on a complex Banach space X is called an operator of Saphar type if its kernel is contained in its generalized range $⋂_{n=1}^{∞} T^n(X)$ and T is relatively regular. For T of Saphar type we determine the supremum of all positive numbers δ such that T - λI is of Saphar type for |λ| δ.
DOI : 10.4064/sm-113-2-169-175

Christoph Schmoeger 1

1
@article{10_4064_sm_113_2_169_175,
     author = {Christoph Schmoeger},
     title = {The stability radius of an operator of {Saphar} type},
     journal = {Studia Mathematica},
     pages = {169--175},
     publisher = {mathdoc},
     volume = {113},
     number = {2},
     year = {1995},
     doi = {10.4064/sm-113-2-169-175},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-113-2-169-175/}
}
TY  - JOUR
AU  - Christoph Schmoeger
TI  - The stability radius of an operator of Saphar type
JO  - Studia Mathematica
PY  - 1995
SP  - 169
EP  - 175
VL  - 113
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-113-2-169-175/
DO  - 10.4064/sm-113-2-169-175
LA  - en
ID  - 10_4064_sm_113_2_169_175
ER  - 
%0 Journal Article
%A Christoph Schmoeger
%T The stability radius of an operator of Saphar type
%J Studia Mathematica
%D 1995
%P 169-175
%V 113
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-113-2-169-175/
%R 10.4064/sm-113-2-169-175
%G en
%F 10_4064_sm_113_2_169_175
Christoph Schmoeger. The stability radius of an operator of Saphar type. Studia Mathematica, Tome 113 (1995) no. 2, pp. 169-175. doi: 10.4064/sm-113-2-169-175

Cité par Sources :