The stability radius of an operator of Saphar type
Studia Mathematica, Tome 113 (1995) no. 2, pp. 169-175
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
A bounded linear operator T on a complex Banach space X is called an operator of Saphar type if its kernel is contained in its generalized range $⋂_{n=1}^{∞} T^n(X)$ and T is relatively regular. For T of Saphar type we determine the supremum of all positive numbers δ such that T - λI is of Saphar type for |λ| δ.
@article{10_4064_sm_113_2_169_175,
author = {Christoph Schmoeger},
title = {The stability radius of an operator of {Saphar} type},
journal = {Studia Mathematica},
pages = {169--175},
publisher = {mathdoc},
volume = {113},
number = {2},
year = {1995},
doi = {10.4064/sm-113-2-169-175},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-113-2-169-175/}
}
TY - JOUR AU - Christoph Schmoeger TI - The stability radius of an operator of Saphar type JO - Studia Mathematica PY - 1995 SP - 169 EP - 175 VL - 113 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-113-2-169-175/ DO - 10.4064/sm-113-2-169-175 LA - en ID - 10_4064_sm_113_2_169_175 ER -
Christoph Schmoeger. The stability radius of an operator of Saphar type. Studia Mathematica, Tome 113 (1995) no. 2, pp. 169-175. doi: 10.4064/sm-113-2-169-175
Cité par Sources :