On local automorphisms and mappings that preserve idempotents
Studia Mathematica, Tome 113 (1995) no. 2, pp. 101-108

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let B(H) be the algebra of all bounded linear operators on a Hilbert space H. Automorphisms and antiautomorphisms are the only bijective linear mappings θ of B(H) with the property that θ(P) is an idempotent whenever P ∈ B(H) is. In case H is separable and infinite-dimensional, every local automorphism of B(H) is an automorphism.
DOI : 10.4064/sm-113-2-101-108

Matej Brešar 1

1
@article{10_4064_sm_113_2_101_108,
     author = {Matej Bre\v{s}ar},
     title = {On local automorphisms and mappings that preserve idempotents},
     journal = {Studia Mathematica},
     pages = {101--108},
     publisher = {mathdoc},
     volume = {113},
     number = {2},
     year = {1995},
     doi = {10.4064/sm-113-2-101-108},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-113-2-101-108/}
}
TY  - JOUR
AU  - Matej Brešar
TI  - On local automorphisms and mappings that preserve idempotents
JO  - Studia Mathematica
PY  - 1995
SP  - 101
EP  - 108
VL  - 113
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-113-2-101-108/
DO  - 10.4064/sm-113-2-101-108
LA  - en
ID  - 10_4064_sm_113_2_101_108
ER  - 
%0 Journal Article
%A Matej Brešar
%T On local automorphisms and mappings that preserve idempotents
%J Studia Mathematica
%D 1995
%P 101-108
%V 113
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-113-2-101-108/
%R 10.4064/sm-113-2-101-108
%G en
%F 10_4064_sm_113_2_101_108
Matej Brešar. On local automorphisms and mappings that preserve idempotents. Studia Mathematica, Tome 113 (1995) no. 2, pp. 101-108. doi: 10.4064/sm-113-2-101-108

Cité par Sources :