On local automorphisms and mappings that preserve idempotents
Studia Mathematica, Tome 113 (1995) no. 2, pp. 101-108
Let B(H) be the algebra of all bounded linear operators on a Hilbert space H. Automorphisms and antiautomorphisms are the only bijective linear mappings θ of B(H) with the property that θ(P) is an idempotent whenever P ∈ B(H) is. In case H is separable and infinite-dimensional, every local automorphism of B(H) is an automorphism.
@article{10_4064_sm_113_2_101_108,
author = {Matej Bre\v{s}ar},
title = {On local automorphisms and mappings that preserve idempotents},
journal = {Studia Mathematica},
pages = {101--108},
year = {1995},
volume = {113},
number = {2},
doi = {10.4064/sm-113-2-101-108},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-113-2-101-108/}
}
TY - JOUR AU - Matej Brešar TI - On local automorphisms and mappings that preserve idempotents JO - Studia Mathematica PY - 1995 SP - 101 EP - 108 VL - 113 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-113-2-101-108/ DO - 10.4064/sm-113-2-101-108 LA - en ID - 10_4064_sm_113_2_101_108 ER -
Matej Brešar. On local automorphisms and mappings that preserve idempotents. Studia Mathematica, Tome 113 (1995) no. 2, pp. 101-108. doi: 10.4064/sm-113-2-101-108
Cité par Sources :