On the behaviour of Jordan-algebra norms on associative algebras
Studia Mathematica, Tome 113 (1995) no. 1, pp. 81-100

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove that for a suitable associative (real or complex) algebra which has many nice algebraic properties, such as being simple and having minimal idempotents, a norm can be given such that the mapping (a,b) ↦ ab + ba is jointly continuous while (a,b) ↦ ab is only separately continuous. We also prove that such a pathology cannot arise for associative simple algebras with a unit. Similar results are obtained for the so-called "norm extension problem", and the relationship between these results and the normed versions of Zel'manov's prime theorem for Jordan algebras are discussed.
DOI : 10.4064/sm-113-1-81-100

Miguel Cabrera Garcia 1 ;  1

1
@article{10_4064_sm_113_1_81_100,
     author = {Miguel Cabrera Garcia and  },
     title = {On the behaviour of {Jordan-algebra} norms on associative algebras},
     journal = {Studia Mathematica},
     pages = {81--100},
     publisher = {mathdoc},
     volume = {113},
     number = {1},
     year = {1995},
     doi = {10.4064/sm-113-1-81-100},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-113-1-81-100/}
}
TY  - JOUR
AU  - Miguel Cabrera Garcia
AU  -  
TI  - On the behaviour of Jordan-algebra norms on associative algebras
JO  - Studia Mathematica
PY  - 1995
SP  - 81
EP  - 100
VL  - 113
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-113-1-81-100/
DO  - 10.4064/sm-113-1-81-100
LA  - en
ID  - 10_4064_sm_113_1_81_100
ER  - 
%0 Journal Article
%A Miguel Cabrera Garcia
%A  
%T On the behaviour of Jordan-algebra norms on associative algebras
%J Studia Mathematica
%D 1995
%P 81-100
%V 113
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-113-1-81-100/
%R 10.4064/sm-113-1-81-100
%G en
%F 10_4064_sm_113_1_81_100
Miguel Cabrera Garcia;  . On the behaviour of Jordan-algebra norms on associative algebras. Studia Mathematica, Tome 113 (1995) no. 1, pp. 81-100. doi: 10.4064/sm-113-1-81-100

Cité par Sources :