On the embedding of 2-concave Orlicz spaces into L¹
    
    
  
  
  
      
      
      
        
Studia Mathematica, Tome 113 (1995) no. 1, pp. 73-80
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
            
              In [K-S 1] it was shown that $Ave_π(∑_{i=1}^{n} |x_i a_{π(i)}|^2)^{1/2}$ is equivalent to an Orlicz norm whose Orlicz function is 2-concave. Here we give a formula for the sequence $a_1,...,a_n$ so that the above expression is equivalent to a given Orlicz norm.
            
            
            
          
        
      @article{10_4064_sm_113_1_73_80,
     author = {Carsten Sch\"utt},
     title = {On the embedding of 2-concave {Orlicz} spaces into {L{\textonesuperior}}},
     journal = {Studia Mathematica},
     pages = {73--80},
     publisher = {mathdoc},
     volume = {113},
     number = {1},
     year = {1995},
     doi = {10.4064/sm-113-1-73-80},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-113-1-73-80/}
}
                      
                      
                    Carsten Schütt. On the embedding of 2-concave Orlicz spaces into L¹. Studia Mathematica, Tome 113 (1995) no. 1, pp. 73-80. doi: 10.4064/sm-113-1-73-80
Cité par Sources :
