On the embedding of 2-concave Orlicz spaces into L¹
Studia Mathematica, Tome 113 (1995) no. 1, pp. 73-80

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

In [K-S 1] it was shown that $Ave_π(∑_{i=1}^{n} |x_i a_{π(i)}|^2)^{1/2}$ is equivalent to an Orlicz norm whose Orlicz function is 2-concave. Here we give a formula for the sequence $a_1,...,a_n$ so that the above expression is equivalent to a given Orlicz norm.
DOI : 10.4064/sm-113-1-73-80

Carsten Schütt 1

1
@article{10_4064_sm_113_1_73_80,
     author = {Carsten Sch\"utt},
     title = {On the embedding of 2-concave {Orlicz} spaces into {L{\textonesuperior}}},
     journal = {Studia Mathematica},
     pages = {73--80},
     publisher = {mathdoc},
     volume = {113},
     number = {1},
     year = {1995},
     doi = {10.4064/sm-113-1-73-80},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-113-1-73-80/}
}
TY  - JOUR
AU  - Carsten Schütt
TI  - On the embedding of 2-concave Orlicz spaces into L¹
JO  - Studia Mathematica
PY  - 1995
SP  - 73
EP  - 80
VL  - 113
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-113-1-73-80/
DO  - 10.4064/sm-113-1-73-80
LA  - en
ID  - 10_4064_sm_113_1_73_80
ER  - 
%0 Journal Article
%A Carsten Schütt
%T On the embedding of 2-concave Orlicz spaces into L¹
%J Studia Mathematica
%D 1995
%P 73-80
%V 113
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-113-1-73-80/
%R 10.4064/sm-113-1-73-80
%G en
%F 10_4064_sm_113_1_73_80
Carsten Schütt. On the embedding of 2-concave Orlicz spaces into L¹. Studia Mathematica, Tome 113 (1995) no. 1, pp. 73-80. doi: 10.4064/sm-113-1-73-80

Cité par Sources :