On automatic boundedness of Nemytskiĭ set-valued operators
Studia Mathematica, Tome 113 (1995) no. 1, pp. 65-72
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let X, Y be two separable F-spaces. Let (Ω,Σ,μ) be a measure space with μ complete, non-atomic and σ-finite. Let $N_F$ be the Nemytskiĭ set-valued operator induced by a sup-measurable set-valued function $F:Ω × X → 2^{Y}$. It is shown that if $N_F$ maps a modular space $(N(L(Ω,Σ,μ;X)), ϱ_{N,μ})$ into subsets of a modular space $(M(L(Ω,Σ,μ;Y)),ϱ_{M,μ})$, then $N_F$ is automatically modular bounded, i.e. for each set K ⊂ N(L(Ω,Σ,μ;X)) such that $r_K = sup{ϱ_{N,μ}(x) : x ∈ K} ∞$ we have $sup{ϱ_{M,μ}(y): y ∈ N_F(K)} ∞$.
Keywords:
Nemytskiĭ set-valued operators, superposition measurable set-valued operators, automatic boundedness, modular spaces
@article{10_4064_sm_113_1_65_72,
author = {S. Rolewicz},
title = {On automatic boundedness of {Nemytski\u{i}} set-valued operators},
journal = {Studia Mathematica},
pages = {65--72},
year = {1995},
volume = {113},
number = {1},
doi = {10.4064/sm-113-1-65-72},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-113-1-65-72/}
}
S. Rolewicz. On automatic boundedness of Nemytskiĭ set-valued operators. Studia Mathematica, Tome 113 (1995) no. 1, pp. 65-72. doi: 10.4064/sm-113-1-65-72
Cité par Sources :