On automatic boundedness of Nemytskiĭ set-valued operators
    
    
  
  
  
      
      
      
        
Studia Mathematica, Tome 113 (1995) no. 1, pp. 65-72
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
            
              Let X, Y be two separable F-spaces. Let (Ω,Σ,μ) be a measure space with μ complete, non-atomic and σ-finite. Let $N_F$ be the Nemytskiĭ set-valued operator induced by a sup-measurable set-valued function $F:Ω × X → 2^{Y}$. It is shown that if $N_F$ maps a modular space $(N(L(Ω,Σ,μ;X)), ϱ_{N,μ})$ into subsets of a modular space $(M(L(Ω,Σ,μ;Y)),ϱ_{M,μ})$, then $N_F$ is automatically modular bounded, i.e. for each set K ⊂ N(L(Ω,Σ,μ;X)) such that $r_K = sup{ϱ_{N,μ}(x) : x ∈ K}  ∞$ we have $sup{ϱ_{M,μ}(y): y ∈ N_F(K)}  ∞$.
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
Nemytskiĭ set-valued operators, superposition measurable set-valued operators, automatic boundedness, modular spaces
                    
                    
                    
                  
                
                
                
                
                
                Affiliations des auteurs :
                
                
                  
                    
                
                
                
                
                
                
                
                
                
                
              S. Rolewicz 1
@article{10_4064_sm_113_1_65_72,
     author = {S. Rolewicz},
     title = {On automatic boundedness of {Nemytski\u{i}} set-valued operators},
     journal = {Studia Mathematica},
     pages = {65--72},
     publisher = {mathdoc},
     volume = {113},
     number = {1},
     year = {1995},
     doi = {10.4064/sm-113-1-65-72},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-113-1-65-72/}
}
                      
                      
                    TY - JOUR AU - S. Rolewicz TI - On automatic boundedness of Nemytskiĭ set-valued operators JO - Studia Mathematica PY - 1995 SP - 65 EP - 72 VL - 113 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-113-1-65-72/ DO - 10.4064/sm-113-1-65-72 LA - en ID - 10_4064_sm_113_1_65_72 ER -
S. Rolewicz. On automatic boundedness of Nemytskiĭ set-valued operators. Studia Mathematica, Tome 113 (1995) no. 1, pp. 65-72. doi: 10.4064/sm-113-1-65-72
Cité par Sources :
