Polynomial asymptotics and approximation of Sobolev functions
Studia Mathematica, Tome 113 (1995) no. 1, pp. 55-64
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We prove several results concerning density of $C_{0}^{∞}$, behaviour at infinity and integral representations for elements of the space $L^{m,p} = {⨍ | ∇^{m}⨍ ∈ L^p}$.
Keywords:
Sobolev space, Beppo Levi space, approximation, polynomial asymptotics, density of $C_0^∞$ functions
@article{10_4064_sm_113_1_55_64,
author = {Piotr Haj{\l}asz and },
title = {Polynomial asymptotics and approximation of {Sobolev} functions},
journal = {Studia Mathematica},
pages = {55--64},
year = {1995},
volume = {113},
number = {1},
doi = {10.4064/sm-113-1-55-64},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-113-1-55-64/}
}
TY - JOUR AU - Piotr Hajłasz AU - TI - Polynomial asymptotics and approximation of Sobolev functions JO - Studia Mathematica PY - 1995 SP - 55 EP - 64 VL - 113 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-113-1-55-64/ DO - 10.4064/sm-113-1-55-64 LA - en ID - 10_4064_sm_113_1_55_64 ER -
Piotr Hajłasz; . Polynomial asymptotics and approximation of Sobolev functions. Studia Mathematica, Tome 113 (1995) no. 1, pp. 55-64. doi: 10.4064/sm-113-1-55-64
Cité par Sources :