The dual of Besov spaces on fractals
Studia Mathematica, Tome 112 (1994) no. 3, pp. 285-300
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
For certain classes of fractal subsets F of $ℝ^n$, the Besov spaces $B_α^{p,q}(F)$ have been studied for α > 0 and 1 ≤ p,q ≤ ∞. In this paper the Besov spaces $B_α^{p,q}(F)$ are introduced for α 0, and it is shown that the dual of $B_α^{p,q}(F)$ is $B_{-α}^{p',q'}(F), α ≠ 0, 1 p,q ∞, where 1/p + 1/p' = 1, 1/q + 1/q' = 1.
@article{10_4064_sm_112_3_285_300,
author = {Alf Jonsson},
title = {The dual of {Besov} spaces on fractals},
journal = {Studia Mathematica},
pages = {285--300},
publisher = {mathdoc},
volume = {112},
number = {3},
year = {1994},
doi = {10.4064/sm-112-3-285-300},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-112-3-285-300/}
}
Alf Jonsson. The dual of Besov spaces on fractals. Studia Mathematica, Tome 112 (1994) no. 3, pp. 285-300. doi: 10.4064/sm-112-3-285-300
Cité par Sources :