Banach spaces which admit a norm with the uniform Kadec-Klee property
Studia Mathematica, Tome 112 (1994) no. 3, pp. 267-277
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Several results are established about Banach spaces Ӿ which can be renormed to have the uniform Kadec-Klee property. It is proved that all such spaces have the complete continuity property. We show that the renorming property can be lifted from Ӿ to the Lebesgue-Bochner space $L_2(Ӿ)$ if and only if Ӿ is super-reflexive. A basis characterization of the renorming property for dual Banach spaces is given.
@article{10_4064_sm_112_3_267_277,
author = {S. J. Dilworth and and },
title = {Banach spaces which admit a norm with the uniform {Kadec-Klee} property},
journal = {Studia Mathematica},
pages = {267--277},
year = {1994},
volume = {112},
number = {3},
doi = {10.4064/sm-112-3-267-277},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-112-3-267-277/}
}
TY - JOUR AU - S. J. Dilworth AU - AU - TI - Banach spaces which admit a norm with the uniform Kadec-Klee property JO - Studia Mathematica PY - 1994 SP - 267 EP - 277 VL - 112 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-112-3-267-277/ DO - 10.4064/sm-112-3-267-277 LA - en ID - 10_4064_sm_112_3_267_277 ER -
S. J. Dilworth; ; . Banach spaces which admit a norm with the uniform Kadec-Klee property. Studia Mathematica, Tome 112 (1994) no. 3, pp. 267-277. doi: 10.4064/sm-112-3-267-277
Cité par Sources :