Construction of standard exact sequences of power series spaces
Studia Mathematica, Tome 112 (1994) no. 3, pp. 229-241

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The following result is proved: Let $Λ_R^p(α)$ denote a power series space of infinite or of finite type, and equip $Λ_R^p(α)$ with its canonical fundamental system of norms, R ∈ {0,∞}, 1 ≤ p ∞. Then a tamely exact sequence (⁎) $0 → Λ_{R}^{p}(α) → Λ_{R}^{p}(α) → Λ_{R}^{p}(α)^ℕ → 0$ exists iff α is strongly stable, i.e. $lim_n α_{2n}/α_n = 1$, and a linear-tamely exact sequence (*) exists iff α is uniformly stable, i.e. there is A such that $lim sup_n α_{Kn}/α_n ≤ A ∞$ for all K. This result extends a theorem of Vogt and Wagner which states that a topologically exact sequence (*) exists iff α is stable, i.e. $sup_n α_{2n}/α_n ∞$.
DOI : 10.4064/sm-112-3-229-241

Markus Poppenberg 1 ;  1

1
@article{10_4064_sm_112_3_229_241,
     author = {Markus Poppenberg and  },
     title = {Construction of standard exact sequences of power series spaces},
     journal = {Studia Mathematica},
     pages = {229--241},
     publisher = {mathdoc},
     volume = {112},
     number = {3},
     year = {1994},
     doi = {10.4064/sm-112-3-229-241},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-112-3-229-241/}
}
TY  - JOUR
AU  - Markus Poppenberg
AU  -  
TI  - Construction of standard exact sequences of power series spaces
JO  - Studia Mathematica
PY  - 1994
SP  - 229
EP  - 241
VL  - 112
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-112-3-229-241/
DO  - 10.4064/sm-112-3-229-241
LA  - en
ID  - 10_4064_sm_112_3_229_241
ER  - 
%0 Journal Article
%A Markus Poppenberg
%A  
%T Construction of standard exact sequences of power series spaces
%J Studia Mathematica
%D 1994
%P 229-241
%V 112
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-112-3-229-241/
%R 10.4064/sm-112-3-229-241
%G en
%F 10_4064_sm_112_3_229_241
Markus Poppenberg;  . Construction of standard exact sequences of power series spaces. Studia Mathematica, Tome 112 (1994) no. 3, pp. 229-241. doi: 10.4064/sm-112-3-229-241

Cité par Sources :