Ambiguous loci of the farthest distance mapping from compact convex sets
Studia Mathematica, Tome 112 (1994) no. 2, pp. 99-107

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

DOI : 10.4064/sm-112-2-99-107

F. S. De Blasi 1

1
@article{10_4064_sm_112_2_99_107,
     author = {F. S. De Blasi},
     title = {Ambiguous loci of the farthest distance mapping from compact convex sets},
     journal = {Studia Mathematica},
     pages = {99--107},
     publisher = {mathdoc},
     volume = {112},
     number = {2},
     year = {1994},
     doi = {10.4064/sm-112-2-99-107},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-112-2-99-107/}
}
TY  - JOUR
AU  - F. S. De Blasi
TI  - Ambiguous loci of the farthest distance mapping from compact convex sets
JO  - Studia Mathematica
PY  - 1994
SP  - 99
EP  - 107
VL  - 112
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-112-2-99-107/
DO  - 10.4064/sm-112-2-99-107
LA  - en
ID  - 10_4064_sm_112_2_99_107
ER  - 
%0 Journal Article
%A F. S. De Blasi
%T Ambiguous loci of the farthest distance mapping from compact convex sets
%J Studia Mathematica
%D 1994
%P 99-107
%V 112
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-112-2-99-107/
%R 10.4064/sm-112-2-99-107
%G en
%F 10_4064_sm_112_2_99_107
F. S. De Blasi. Ambiguous loci of the farthest distance mapping from compact convex sets. Studia Mathematica, Tome 112 (1994) no. 2, pp. 99-107. doi: 10.4064/sm-112-2-99-107

Cité par Sources :