Ambiguous loci of the farthest distance mapping from compact convex sets
Studia Mathematica, Tome 112 (1994) no. 2, pp. 99-107
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let
@article{10_4064_sm_112_2_99_107,
author = {F. S. De Blasi},
title = {Ambiguous loci of the farthest distance mapping from compact convex sets},
journal = {Studia Mathematica},
pages = {99--107},
publisher = {mathdoc},
volume = {112},
number = {2},
year = {1994},
doi = {10.4064/sm-112-2-99-107},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-112-2-99-107/}
}
TY - JOUR AU - F. S. De Blasi TI - Ambiguous loci of the farthest distance mapping from compact convex sets JO - Studia Mathematica PY - 1994 SP - 99 EP - 107 VL - 112 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-112-2-99-107/ DO - 10.4064/sm-112-2-99-107 LA - en ID - 10_4064_sm_112_2_99_107 ER -
F. S. De Blasi. Ambiguous loci of the farthest distance mapping from compact convex sets. Studia Mathematica, Tome 112 (1994) no. 2, pp. 99-107. doi: 10.4064/sm-112-2-99-107
Cité par Sources :