On sequential convergence in weakly compact subsets of Banach spaces
Studia Mathematica, Tome 112 (1994) no. 2, pp. 189-194
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We construct an example of a Banach space E such that every weakly compact subset of E is bisequential and E contains a weakly compact subset which cannot be embedded in a Hilbert space equipped with the weak topology. This answers a question of Nyikos.
Keywords:
Banach space, weakly compact set, uniform Eberlein compact space, bisequential space
Affiliations des auteurs :
Witold Marciszewski 1
@article{10_4064_sm_112_2_189_194,
author = {Witold Marciszewski},
title = {On sequential convergence in weakly compact subsets of {Banach} spaces},
journal = {Studia Mathematica},
pages = {189--194},
publisher = {mathdoc},
volume = {112},
number = {2},
year = {1994},
doi = {10.4064/sm-112-2-189-194},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-112-2-189-194/}
}
TY - JOUR AU - Witold Marciszewski TI - On sequential convergence in weakly compact subsets of Banach spaces JO - Studia Mathematica PY - 1994 SP - 189 EP - 194 VL - 112 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-112-2-189-194/ DO - 10.4064/sm-112-2-189-194 LA - en ID - 10_4064_sm_112_2_189_194 ER -
%0 Journal Article %A Witold Marciszewski %T On sequential convergence in weakly compact subsets of Banach spaces %J Studia Mathematica %D 1994 %P 189-194 %V 112 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm-112-2-189-194/ %R 10.4064/sm-112-2-189-194 %G en %F 10_4064_sm_112_2_189_194
Witold Marciszewski. On sequential convergence in weakly compact subsets of Banach spaces. Studia Mathematica, Tome 112 (1994) no. 2, pp. 189-194. doi: 10.4064/sm-112-2-189-194
Cité par Sources :