Derivability, variation and range of a vector measure
Studia Mathematica, Tome 112 (1994) no. 2, pp. 165-187

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove that the range of a vector measure determines the σ-finiteness of its variation and the derivability of the measure. Let F and G be two countably additive measures with values in a Banach space such that the closed convex hull of the range of F is a translate of the closed convex hull of the range of G; then F has a σ-finite variation if and only if G does, and F has a Bochner derivative with respect to its variation if and only if G does. This complements a result of [Ro] where we proved that the range of a measure determines its total variation. We also give a new proof of this fact.
DOI : 10.4064/sm-112-2-165-187
Keywords: vector measures, range, variation, Bochner derivability, zonoid

L. Rodríguez-Piazza 1

1
@article{10_4064_sm_112_2_165_187,
     author = {L. Rodr{\'\i}guez-Piazza},
     title = {Derivability, variation and range of a vector measure},
     journal = {Studia Mathematica},
     pages = {165--187},
     publisher = {mathdoc},
     volume = {112},
     number = {2},
     year = {1994},
     doi = {10.4064/sm-112-2-165-187},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-112-2-165-187/}
}
TY  - JOUR
AU  - L. Rodríguez-Piazza
TI  - Derivability, variation and range of a vector measure
JO  - Studia Mathematica
PY  - 1994
SP  - 165
EP  - 187
VL  - 112
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-112-2-165-187/
DO  - 10.4064/sm-112-2-165-187
LA  - en
ID  - 10_4064_sm_112_2_165_187
ER  - 
%0 Journal Article
%A L. Rodríguez-Piazza
%T Derivability, variation and range of a vector measure
%J Studia Mathematica
%D 1994
%P 165-187
%V 112
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-112-2-165-187/
%R 10.4064/sm-112-2-165-187
%G en
%F 10_4064_sm_112_2_165_187
L. Rodríguez-Piazza. Derivability, variation and range of a vector measure. Studia Mathematica, Tome 112 (1994) no. 2, pp. 165-187. doi: 10.4064/sm-112-2-165-187

Cité par Sources :