Precompactness in the uniform ergodic theory
Studia Mathematica, Tome 112 (1994) no. 1, pp. 89-97

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We characterize the Banach space operators T whose arithmetic means ${n^{-1}(I + T + ... + T^{n-1})}_{n ≥ 1}$ form a precompact set in the operator norm topology. This occurs if and only if the sequence ${n^{-1} T^n}_{n ≥ 1}$ is precompact and the point 1 is at most a simple pole of the resolvent of T. Equivalent geometric conditions are also obtained.
DOI : 10.4064/sm-112-1-89-97

Yu Lyubich 1 ;  1

1
@article{10_4064_sm_112_1_89_97,
     author = {Yu Lyubich and  },
     title = {Precompactness in the uniform ergodic theory},
     journal = {Studia Mathematica},
     pages = {89--97},
     publisher = {mathdoc},
     volume = {112},
     number = {1},
     year = {1994},
     doi = {10.4064/sm-112-1-89-97},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-112-1-89-97/}
}
TY  - JOUR
AU  - Yu Lyubich
AU  -  
TI  - Precompactness in the uniform ergodic theory
JO  - Studia Mathematica
PY  - 1994
SP  - 89
EP  - 97
VL  - 112
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-112-1-89-97/
DO  - 10.4064/sm-112-1-89-97
LA  - en
ID  - 10_4064_sm_112_1_89_97
ER  - 
%0 Journal Article
%A Yu Lyubich
%A  
%T Precompactness in the uniform ergodic theory
%J Studia Mathematica
%D 1994
%P 89-97
%V 112
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-112-1-89-97/
%R 10.4064/sm-112-1-89-97
%G en
%F 10_4064_sm_112_1_89_97
Yu Lyubich;  . Precompactness in the uniform ergodic theory. Studia Mathematica, Tome 112 (1994) no. 1, pp. 89-97. doi: 10.4064/sm-112-1-89-97

Cité par Sources :