Precompactness in the uniform ergodic theory
Studia Mathematica, Tome 112 (1994) no. 1, pp. 89-97
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We characterize the Banach space operators T whose arithmetic means ${n^{-1}(I + T + ... + T^{n-1})}_{n ≥ 1}$ form a precompact set in the operator norm topology. This occurs if and only if the sequence ${n^{-1} T^n}_{n ≥ 1}$ is precompact and the point 1 is at most a simple pole of the resolvent of T. Equivalent geometric conditions are also obtained.
@article{10_4064_sm_112_1_89_97,
author = {Yu Lyubich and },
title = {Precompactness in the uniform ergodic theory},
journal = {Studia Mathematica},
pages = {89--97},
publisher = {mathdoc},
volume = {112},
number = {1},
year = {1994},
doi = {10.4064/sm-112-1-89-97},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-112-1-89-97/}
}
Yu Lyubich; . Precompactness in the uniform ergodic theory. Studia Mathematica, Tome 112 (1994) no. 1, pp. 89-97. doi: 10.4064/sm-112-1-89-97
Cité par Sources :