Spectral decompositions and harmonic analysis on UMD spaces
Studia Mathematica, Tome 112 (1994) no. 1, pp. 13-49
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

We develop a spectral-theoretic harmonic analysis for an arbitrary UMD space X. Our approach utilizes the spectral decomposability of X and the multiplier theory for $L_X^p$ to provide on the space X itself analogues of the classical themes embodied in the Littlewood-Paley Theorem, the Strong Marcinkiewicz Multiplier Theorem, and the M. Riesz Property. In particular, it is shown by spectral integration that classical Marcinkiewicz multipliers have associated transforms acting on X.
@article{10_4064_sm_112_1_13_49,
     author = {Earl Berkson and T. A. },
     title = {Spectral decompositions and harmonic analysis on {UMD} spaces},
     journal = {Studia Mathematica},
     pages = {13--49},
     year = {1994},
     volume = {112},
     number = {1},
     doi = {10.4064/sm-112-1-13-49},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-112-1-13-49/}
}
TY  - JOUR
AU  - Earl Berkson
AU  - T. A. 
TI  - Spectral decompositions and harmonic analysis on UMD spaces
JO  - Studia Mathematica
PY  - 1994
SP  - 13
EP  - 49
VL  - 112
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-112-1-13-49/
DO  - 10.4064/sm-112-1-13-49
LA  - en
ID  - 10_4064_sm_112_1_13_49
ER  - 
%0 Journal Article
%A Earl Berkson
%A T. A. 
%T Spectral decompositions and harmonic analysis on UMD spaces
%J Studia Mathematica
%D 1994
%P 13-49
%V 112
%N 1
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-112-1-13-49/
%R 10.4064/sm-112-1-13-49
%G en
%F 10_4064_sm_112_1_13_49
Earl Berkson; T. A. . Spectral decompositions and harmonic analysis on UMD spaces. Studia Mathematica, Tome 112 (1994) no. 1, pp. 13-49. doi: 10.4064/sm-112-1-13-49

Cité par Sources :