Spectral decompositions and harmonic analysis on UMD spaces
Studia Mathematica, Tome 112 (1994) no. 1, pp. 13-49
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We develop a spectral-theoretic harmonic analysis for an arbitrary UMD space X. Our approach utilizes the spectral decomposability of X and the multiplier theory for $L_X^p$ to provide on the space X itself analogues of the classical themes embodied in the Littlewood-Paley Theorem, the Strong Marcinkiewicz Multiplier Theorem, and the M. Riesz Property. In particular, it is shown by spectral integration that classical Marcinkiewicz multipliers have associated transforms acting on X.
@article{10_4064_sm_112_1_13_49,
author = {Earl Berkson and T. A. },
title = {Spectral decompositions and harmonic analysis on {UMD} spaces},
journal = {Studia Mathematica},
pages = {13--49},
publisher = {mathdoc},
volume = {112},
number = {1},
year = {1994},
doi = {10.4064/sm-112-1-13-49},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-112-1-13-49/}
}
TY - JOUR AU - Earl Berkson AU - T. A. TI - Spectral decompositions and harmonic analysis on UMD spaces JO - Studia Mathematica PY - 1994 SP - 13 EP - 49 VL - 112 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-112-1-13-49/ DO - 10.4064/sm-112-1-13-49 LA - en ID - 10_4064_sm_112_1_13_49 ER -
Earl Berkson; T. A. . Spectral decompositions and harmonic analysis on UMD spaces. Studia Mathematica, Tome 112 (1994) no. 1, pp. 13-49. doi: 10.4064/sm-112-1-13-49
Cité par Sources :