Complex interpolation functors with a family of quasi-power function parameters
Studia Mathematica, Tome 111 (1994) no. 3, pp. 283-305
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
For the complex interpolation functors associated with derivatives of analytic functions, the Calderón fundamental inequality is formulated in both additive and multiplicative forms; discretization, reiteration, the Calderón-Lozanovskiĭ construction for Banach lattices, and the Aronszajn-Gagliardo construction concerning minimality and maximality are presented. These more general complex interpolation functors are closely connected with the real and other interpolation functors via function parameters which are quasi-powers with a logarithmic factor.
@article{10_4064_sm_111_3_283_305,
author = {Ming Fan},
title = {Complex interpolation functors with a family of quasi-power function parameters},
journal = {Studia Mathematica},
pages = {283--305},
publisher = {mathdoc},
volume = {111},
number = {3},
year = {1994},
doi = {10.4064/sm-111-3-283-305},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-111-3-283-305/}
}
TY - JOUR AU - Ming Fan TI - Complex interpolation functors with a family of quasi-power function parameters JO - Studia Mathematica PY - 1994 SP - 283 EP - 305 VL - 111 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-111-3-283-305/ DO - 10.4064/sm-111-3-283-305 LA - en ID - 10_4064_sm_111_3_283_305 ER -
%0 Journal Article %A Ming Fan %T Complex interpolation functors with a family of quasi-power function parameters %J Studia Mathematica %D 1994 %P 283-305 %V 111 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm-111-3-283-305/ %R 10.4064/sm-111-3-283-305 %G en %F 10_4064_sm_111_3_283_305
Ming Fan. Complex interpolation functors with a family of quasi-power function parameters. Studia Mathematica, Tome 111 (1994) no. 3, pp. 283-305. doi: 10.4064/sm-111-3-283-305
Cité par Sources :