From weak to strong types of $L^{1}_{E}$-convergence by the Bocce criterion
Studia Mathematica, Tome 111 (1994) no. 3, pp. 241-262
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Necessary and sufficient oscillation conditions are given for a weakly convergent sequence (resp. relatively weakly compact set) in the Bochner-Lebesgue space $ℒ^{1}_{E}$ to be norm convergent (resp. relatively norm compact), thus extending the known results for $ℒ^{1}_{ℝ}$. Similarly, necessary and sufficient oscillation conditions are given to pass from weak to limited (and also to Pettis-norm) convergence in $ℒ^{1}_{E}$. It is shown that tightness is a necessary and sufficient condition to pass from limited to strong convergence. Other implications between several modes of convergence in $ℒ^{1}_{E}$ are also studied.
@article{10_4064_sm_111_3_241_262,
author = {Erik J. Balder and and },
title = {From weak to strong types of $L^{1}_{E}$-convergence by the {Bocce} criterion},
journal = {Studia Mathematica},
pages = {241--262},
year = {1994},
volume = {111},
number = {3},
doi = {10.4064/sm-111-3-241-262},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-111-3-241-262/}
}
TY - JOUR
AU - Erik J. Balder
AU -
AU -
TI - From weak to strong types of $L^{1}_{E}$-convergence by the Bocce criterion
JO - Studia Mathematica
PY - 1994
SP - 241
EP - 262
VL - 111
IS - 3
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-111-3-241-262/
DO - 10.4064/sm-111-3-241-262
LA - en
ID - 10_4064_sm_111_3_241_262
ER -
%0 Journal Article
%A Erik J. Balder
%A
%A
%T From weak to strong types of $L^{1}_{E}$-convergence by the Bocce criterion
%J Studia Mathematica
%D 1994
%P 241-262
%V 111
%N 3
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-111-3-241-262/
%R 10.4064/sm-111-3-241-262
%G en
%F 10_4064_sm_111_3_241_262
Erik J. Balder; ; . From weak to strong types of $L^{1}_{E}$-convergence by the Bocce criterion. Studia Mathematica, Tome 111 (1994) no. 3, pp. 241-262. doi: 10.4064/sm-111-3-241-262
Cité par Sources :