Every separable Banach space has a bounded strong norming biorthogonal sequence which is also a Steinitz basis
Studia Mathematica, Tome 111 (1994) no. 3, pp. 207-222

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Every separable, infinite-dimensional Banach space X has a biorthogonal sequence ${z_n, z*_n}$, with $span{z*_n}$ norming on X and ${∥z_n∥ + ∥z*_n∥}$ bounded, so that, for every x in X and x* in X*, there exists a permutation {π(n)} of {n} so that $x ∈ \overline{conv} {finite subseries of ∑_{n=1}^{∞} z*_n(x)z_n} and x*_n(x) = ∑_{n=1}^∞ z*_{π(n)}(x)x*(z_{π(n)})$.
DOI : 10.4064/sm-111-3-207-222

Paolo Terenzi 1

1
@article{10_4064_sm_111_3_207_222,
     author = {Paolo Terenzi},
     title = {Every separable {Banach} space has a bounded strong norming biorthogonal sequence which is also a {Steinitz} basis},
     journal = {Studia Mathematica},
     pages = {207--222},
     publisher = {mathdoc},
     volume = {111},
     number = {3},
     year = {1994},
     doi = {10.4064/sm-111-3-207-222},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-111-3-207-222/}
}
TY  - JOUR
AU  - Paolo Terenzi
TI  - Every separable Banach space has a bounded strong norming biorthogonal sequence which is also a Steinitz basis
JO  - Studia Mathematica
PY  - 1994
SP  - 207
EP  - 222
VL  - 111
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-111-3-207-222/
DO  - 10.4064/sm-111-3-207-222
LA  - en
ID  - 10_4064_sm_111_3_207_222
ER  - 
%0 Journal Article
%A Paolo Terenzi
%T Every separable Banach space has a bounded strong norming biorthogonal sequence which is also a Steinitz basis
%J Studia Mathematica
%D 1994
%P 207-222
%V 111
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-111-3-207-222/
%R 10.4064/sm-111-3-207-222
%G en
%F 10_4064_sm_111_3_207_222
Paolo Terenzi. Every separable Banach space has a bounded strong norming biorthogonal sequence which is also a Steinitz basis. Studia Mathematica, Tome 111 (1994) no. 3, pp. 207-222. doi: 10.4064/sm-111-3-207-222

Cité par Sources :