Oscillatory kernels in certain Hardy-type spaces
Studia Mathematica, Tome 111 (1994) no. 2, pp. 195-206
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We consider a convolution operator Tf = p.v. Ω ⁎ f with $Ω(x) = K(x)e^{ih(x)}$, where K(x) is an (n,β) kernel near the origin and an (α,β), α ≥ n, kernel away from the origin; h(x) is a real-valued $C^∞$ function on $ℝ^n ∖ {0}$. We give a criterion for such an operator to be bounded from the space $H^{p}_{0}(ℝ^n)$ into itself.
@article{10_4064_sm_111_2_195_206,
author = {Lung-Kee Chen},
title = {Oscillatory kernels in certain {Hardy-type} spaces},
journal = {Studia Mathematica},
pages = {195--206},
publisher = {mathdoc},
volume = {111},
number = {2},
year = {1994},
doi = {10.4064/sm-111-2-195-206},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-111-2-195-206/}
}
TY - JOUR AU - Lung-Kee Chen TI - Oscillatory kernels in certain Hardy-type spaces JO - Studia Mathematica PY - 1994 SP - 195 EP - 206 VL - 111 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-111-2-195-206/ DO - 10.4064/sm-111-2-195-206 LA - en ID - 10_4064_sm_111_2_195_206 ER -
Lung-Kee Chen. Oscillatory kernels in certain Hardy-type spaces. Studia Mathematica, Tome 111 (1994) no. 2, pp. 195-206. doi: 10.4064/sm-111-2-195-206
Cité par Sources :