Oscillatory kernels in certain Hardy-type spaces
Studia Mathematica, Tome 111 (1994) no. 2, pp. 195-206

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We consider a convolution operator Tf = p.v. Ω ⁎ f with $Ω(x) = K(x)e^{ih(x)}$, where K(x) is an (n,β) kernel near the origin and an (α,β), α ≥ n, kernel away from the origin; h(x) is a real-valued $C^∞$ function on $ℝ^n ∖ {0}$. We give a criterion for such an operator to be bounded from the space $H^{p}_{0}(ℝ^n)$ into itself.
DOI : 10.4064/sm-111-2-195-206

Lung-Kee Chen 1

1
@article{10_4064_sm_111_2_195_206,
     author = {Lung-Kee Chen},
     title = {Oscillatory kernels in certain {Hardy-type} spaces},
     journal = {Studia Mathematica},
     pages = {195--206},
     publisher = {mathdoc},
     volume = {111},
     number = {2},
     year = {1994},
     doi = {10.4064/sm-111-2-195-206},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-111-2-195-206/}
}
TY  - JOUR
AU  - Lung-Kee Chen
TI  - Oscillatory kernels in certain Hardy-type spaces
JO  - Studia Mathematica
PY  - 1994
SP  - 195
EP  - 206
VL  - 111
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-111-2-195-206/
DO  - 10.4064/sm-111-2-195-206
LA  - en
ID  - 10_4064_sm_111_2_195_206
ER  - 
%0 Journal Article
%A Lung-Kee Chen
%T Oscillatory kernels in certain Hardy-type spaces
%J Studia Mathematica
%D 1994
%P 195-206
%V 111
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-111-2-195-206/
%R 10.4064/sm-111-2-195-206
%G en
%F 10_4064_sm_111_2_195_206
Lung-Kee Chen. Oscillatory kernels in certain Hardy-type spaces. Studia Mathematica, Tome 111 (1994) no. 2, pp. 195-206. doi: 10.4064/sm-111-2-195-206

Cité par Sources :