Complemented ideals of group algebras
Studia Mathematica, Tome 111 (1994) no. 2, pp. 123-152

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The existence of a projection onto an ideal I of a commutative group algebra $L^{1}(G)$ depends on its hull Z(I) ⊆ Ĝ. Existing methods for constructing a projection onto I rely on a decomposition of Z(I) into simpler hulls, which are then reassembled one at a time, resulting in a chain of projections which can be composed to give a projection onto I. These methods are refined and examples are constructed to show that this approach does not work in general. Some answers are also given to previously asked questions concerning such hulls and some conjectures are presented concerning the classification of these complemented ideals.
DOI : 10.4064/sm-111-2-123-152

Andrew G. Kepert 1

1
@article{10_4064_sm_111_2_123_152,
     author = {Andrew G. Kepert},
     title = {Complemented ideals of group algebras},
     journal = {Studia Mathematica},
     pages = {123--152},
     publisher = {mathdoc},
     volume = {111},
     number = {2},
     year = {1994},
     doi = {10.4064/sm-111-2-123-152},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-111-2-123-152/}
}
TY  - JOUR
AU  - Andrew G. Kepert
TI  - Complemented ideals of group algebras
JO  - Studia Mathematica
PY  - 1994
SP  - 123
EP  - 152
VL  - 111
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-111-2-123-152/
DO  - 10.4064/sm-111-2-123-152
LA  - en
ID  - 10_4064_sm_111_2_123_152
ER  - 
%0 Journal Article
%A Andrew G. Kepert
%T Complemented ideals of group algebras
%J Studia Mathematica
%D 1994
%P 123-152
%V 111
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-111-2-123-152/
%R 10.4064/sm-111-2-123-152
%G en
%F 10_4064_sm_111_2_123_152
Andrew G. Kepert. Complemented ideals of group algebras. Studia Mathematica, Tome 111 (1994) no. 2, pp. 123-152. doi: 10.4064/sm-111-2-123-152

Cité par Sources :