Spectral multipliers for a distinguished Laplacian on certain groups of exponential growth
Studia Mathematica, Tome 111 (1994) no. 2, pp. 103-121

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove that on Iwasawa AN groups coming from arbitrary semisimple Lie groups there is a Laplacian with a nonholomorphic functional calculus, not only for $L^1(AN),$ but also for $L^p(AN)$, where 1 p ∞. This yields a spectral multiplier theorem analogous to the ones known for sublaplacians on stratified groups.
DOI : 10.4064/sm-111-2-103-121

Michael Cowling 1

1
@article{10_4064_sm_111_2_103_121,
     author = {Michael Cowling},
     title = {Spectral multipliers for a distinguished {Laplacian} on certain groups of exponential growth},
     journal = {Studia Mathematica},
     pages = {103--121},
     publisher = {mathdoc},
     volume = {111},
     number = {2},
     year = {1994},
     doi = {10.4064/sm-111-2-103-121},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-111-2-103-121/}
}
TY  - JOUR
AU  - Michael Cowling
TI  - Spectral multipliers for a distinguished Laplacian on certain groups of exponential growth
JO  - Studia Mathematica
PY  - 1994
SP  - 103
EP  - 121
VL  - 111
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-111-2-103-121/
DO  - 10.4064/sm-111-2-103-121
LA  - en
ID  - 10_4064_sm_111_2_103_121
ER  - 
%0 Journal Article
%A Michael Cowling
%T Spectral multipliers for a distinguished Laplacian on certain groups of exponential growth
%J Studia Mathematica
%D 1994
%P 103-121
%V 111
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-111-2-103-121/
%R 10.4064/sm-111-2-103-121
%G en
%F 10_4064_sm_111_2_103_121
Michael Cowling. Spectral multipliers for a distinguished Laplacian on certain groups of exponential growth. Studia Mathematica, Tome 111 (1994) no. 2, pp. 103-121. doi: 10.4064/sm-111-2-103-121

Cité par Sources :