Spectral multipliers for a distinguished Laplacian on certain groups of exponential growth
Studia Mathematica, Tome 111 (1994) no. 2, pp. 103-121
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove that on Iwasawa AN groups coming from arbitrary semisimple Lie groups there is a Laplacian with a nonholomorphic functional calculus, not only for $L^1(AN),$ but also for $L^p(AN)$, where 1 p ∞. This yields a spectral multiplier theorem analogous to the ones known for sublaplacians on stratified groups.
@article{10_4064_sm_111_2_103_121,
author = {Michael Cowling},
title = {Spectral multipliers for a distinguished {Laplacian} on certain groups of exponential growth},
journal = {Studia Mathematica},
pages = {103--121},
publisher = {mathdoc},
volume = {111},
number = {2},
year = {1994},
doi = {10.4064/sm-111-2-103-121},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-111-2-103-121/}
}
TY - JOUR AU - Michael Cowling TI - Spectral multipliers for a distinguished Laplacian on certain groups of exponential growth JO - Studia Mathematica PY - 1994 SP - 103 EP - 121 VL - 111 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-111-2-103-121/ DO - 10.4064/sm-111-2-103-121 LA - en ID - 10_4064_sm_111_2_103_121 ER -
%0 Journal Article %A Michael Cowling %T Spectral multipliers for a distinguished Laplacian on certain groups of exponential growth %J Studia Mathematica %D 1994 %P 103-121 %V 111 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm-111-2-103-121/ %R 10.4064/sm-111-2-103-121 %G en %F 10_4064_sm_111_2_103_121
Michael Cowling. Spectral multipliers for a distinguished Laplacian on certain groups of exponential growth. Studia Mathematica, Tome 111 (1994) no. 2, pp. 103-121. doi: 10.4064/sm-111-2-103-121
Cité par Sources :