Volume approximation of convex bodies by polytopes - a constructive method
Studia Mathematica, Tome 111 (1994) no. 1, pp. 81-95
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Algorithms are given for constructing a polytope P with n vertices (facets), contained in (or containing) a given convex body K in $ℝ^d$, so that the ratio of the volumes |K∖P|/|K| (or |P∖K|/|K|) is smaller than $f(d)/n^{2/(d-1)}$.
@article{10_4064_sm_111_1_81_95,
author = {Yehoram Gordon and and },
title = {Volume approximation of convex bodies by polytopes - a constructive method},
journal = {Studia Mathematica},
pages = {81--95},
year = {1994},
volume = {111},
number = {1},
doi = {10.4064/sm-111-1-81-95},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-111-1-81-95/}
}
TY - JOUR AU - Yehoram Gordon AU - AU - TI - Volume approximation of convex bodies by polytopes - a constructive method JO - Studia Mathematica PY - 1994 SP - 81 EP - 95 VL - 111 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-111-1-81-95/ DO - 10.4064/sm-111-1-81-95 LA - en ID - 10_4064_sm_111_1_81_95 ER -
Yehoram Gordon; ; . Volume approximation of convex bodies by polytopes - a constructive method. Studia Mathematica, Tome 111 (1994) no. 1, pp. 81-95. doi: 10.4064/sm-111-1-81-95
Cité par Sources :