Volume approximation of convex bodies by polytopes - a constructive method
Studia Mathematica, Tome 111 (1994) no. 1, pp. 81-95 Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

Algorithms are given for constructing a polytope P with n vertices (facets), contained in (or containing) a given convex body K in $ℝ^d$, so that the ratio of the volumes |K∖P|/|K| (or |P∖K|/|K|) is smaller than $f(d)/n^{2/(d-1)}$.
DOI : 10.4064/sm-111-1-81-95
Keywords: convex bodies, polytopes, approximation
@article{10_4064_sm_111_1_81_95,
     author = {Yehoram Gordon and   and  },
     title = {Volume approximation of convex bodies by polytopes - a constructive method},
     journal = {Studia Mathematica},
     pages = {81--95},
     year = {1994},
     volume = {111},
     number = {1},
     doi = {10.4064/sm-111-1-81-95},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-111-1-81-95/}
}
TY  - JOUR
AU  - Yehoram Gordon
AU  -  
AU  -  
TI  - Volume approximation of convex bodies by polytopes - a constructive method
JO  - Studia Mathematica
PY  - 1994
SP  - 81
EP  - 95
VL  - 111
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-111-1-81-95/
DO  - 10.4064/sm-111-1-81-95
LA  - en
ID  - 10_4064_sm_111_1_81_95
ER  - 
%0 Journal Article
%A Yehoram Gordon
%A  
%A  
%T Volume approximation of convex bodies by polytopes - a constructive method
%J Studia Mathematica
%D 1994
%P 81-95
%V 111
%N 1
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-111-1-81-95/
%R 10.4064/sm-111-1-81-95
%G en
%F 10_4064_sm_111_1_81_95
Yehoram Gordon;  ;  . Volume approximation of convex bodies by polytopes - a constructive method. Studia Mathematica, Tome 111 (1994) no. 1, pp. 81-95. doi: 10.4064/sm-111-1-81-95

Cité par Sources :