Spaces defined by the level function and their duals
Studia Mathematica, Tome 111 (1994) no. 1, pp. 19-52 Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

The classical level function construction of Halperin and Lorentz is extended to Lebesgue spaces with general measures. The construction is also carried farther. In particular, the level function is considered as a monotone map on its natural domain, a superspace of $L^p$. These domains are shown to be Banach spaces which, although closely tied to $L^p$ spaces, are not reflexive. A related construction is given which characterizes their dual spaces.
DOI : 10.4064/sm-111-1-19-52
Keywords: function spaces, Hölder's inequality, Hardy's inequality, dual spaces
@article{10_4064_sm_111_1_19_52,
     author = {Gord Sinnamon},
     title = {Spaces defined by the level function and their duals},
     journal = {Studia Mathematica},
     pages = {19--52},
     year = {1994},
     volume = {111},
     number = {1},
     doi = {10.4064/sm-111-1-19-52},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-111-1-19-52/}
}
TY  - JOUR
AU  - Gord Sinnamon
TI  - Spaces defined by the level function and their duals
JO  - Studia Mathematica
PY  - 1994
SP  - 19
EP  - 52
VL  - 111
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-111-1-19-52/
DO  - 10.4064/sm-111-1-19-52
LA  - en
ID  - 10_4064_sm_111_1_19_52
ER  - 
%0 Journal Article
%A Gord Sinnamon
%T Spaces defined by the level function and their duals
%J Studia Mathematica
%D 1994
%P 19-52
%V 111
%N 1
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-111-1-19-52/
%R 10.4064/sm-111-1-19-52
%G en
%F 10_4064_sm_111_1_19_52
Gord Sinnamon. Spaces defined by the level function and their duals. Studia Mathematica, Tome 111 (1994) no. 1, pp. 19-52. doi: 10.4064/sm-111-1-19-52

Cité par Sources :