Sur les dimensions de mesures
Studia Mathematica, Tome 111 (1994) no. 1, pp. 1-17

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Firstly, we introduce the lower and upper dimensions for a measure defined on a metric space. Secondly, we establish the dimension formulas and characterize the unidimensional measures which were introduced by J.-P. Kahane. Lastly, we give some applications of these to the calculus of dimensions and the multifractal analysis of certain well known measures such as Lebesgue measures on Cantor sets, Gibbs measures, Markov measures and Riesz products etc.
DOI : 10.4064/sm-111-1-1-17
Mots-clés : upper and lower dimension, dimension formulas, unidimensional, multifractal, Gibbs measure, Markov measure, Riesz product

Ai Hua Fan 1

1
@article{10_4064_sm_111_1_1_17,
     author = {Ai Hua Fan},
     title = {Sur les dimensions de mesures},
     journal = {Studia Mathematica},
     pages = {1--17},
     publisher = {mathdoc},
     volume = {111},
     number = {1},
     year = {1994},
     doi = {10.4064/sm-111-1-1-17},
     language = {fr},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-111-1-1-17/}
}
TY  - JOUR
AU  - Ai Hua Fan
TI  - Sur les dimensions de mesures
JO  - Studia Mathematica
PY  - 1994
SP  - 1
EP  - 17
VL  - 111
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-111-1-1-17/
DO  - 10.4064/sm-111-1-1-17
LA  - fr
ID  - 10_4064_sm_111_1_1_17
ER  - 
%0 Journal Article
%A Ai Hua Fan
%T Sur les dimensions de mesures
%J Studia Mathematica
%D 1994
%P 1-17
%V 111
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-111-1-1-17/
%R 10.4064/sm-111-1-1-17
%G fr
%F 10_4064_sm_111_1_1_17
Ai Hua Fan. Sur les dimensions de mesures. Studia Mathematica, Tome 111 (1994) no. 1, pp. 1-17. doi: 10.4064/sm-111-1-1-17

Cité par Sources :