Sur les dimensions de mesures
Studia Mathematica, Tome 111 (1994) no. 1, pp. 1-17
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Firstly, we introduce the lower and upper dimensions for a measure defined on a metric space. Secondly, we establish the dimension formulas and characterize the unidimensional measures which were introduced by J.-P. Kahane. Lastly, we give some applications of these to the calculus of dimensions and the multifractal analysis of certain well known measures such as Lebesgue measures on Cantor sets, Gibbs measures, Markov measures and Riesz products etc.
Mots-clés :
upper and lower dimension, dimension formulas, unidimensional, multifractal, Gibbs measure, Markov measure, Riesz product
Affiliations des auteurs :
Ai Hua Fan 1
@article{10_4064_sm_111_1_1_17,
author = {Ai Hua Fan},
title = {Sur les dimensions de mesures},
journal = {Studia Mathematica},
pages = {1--17},
publisher = {mathdoc},
volume = {111},
number = {1},
year = {1994},
doi = {10.4064/sm-111-1-1-17},
language = {fr},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-111-1-1-17/}
}
Ai Hua Fan. Sur les dimensions de mesures. Studia Mathematica, Tome 111 (1994) no. 1, pp. 1-17. doi: 10.4064/sm-111-1-1-17
Cité par Sources :