The cancellation law for inf-convolution of convex functions
Studia Mathematica, Tome 110 (1994) no. 3, pp. 271-282
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Conditions under which the inf-convolution of f and g $f □ g(x):= inf_{y+z=x}(f(y)+g(z))$ has the cancellation property (i.e. f □ h ≡ g □ h implies f ≡ g) are treated in a convex analysis framework. In particular, we show that the set of strictly convex lower semicontinuous functions $f: X → ℝ ∪ {+∞}$ on a reflexive Banach space such that $ lim_{∥x∥ → ∞} f(x)/∥x∥ = ∞$ constitutes a semigroup, with inf-convolution as multiplication, which can be embedded in the group of its quotients.
Keywords:
inf-convolution, convex functions, subdifferentials, the cancellation law, a characterization of reflexivity
Affiliations des auteurs :
Dariusz Zagrodny 1
@article{10_4064_sm_110_3_271_282,
author = {Dariusz Zagrodny},
title = {The cancellation law for inf-convolution of convex functions},
journal = {Studia Mathematica},
pages = {271--282},
publisher = {mathdoc},
volume = {110},
number = {3},
year = {1994},
doi = {10.4064/sm-110-3-271-282},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-110-3-271-282/}
}
TY - JOUR AU - Dariusz Zagrodny TI - The cancellation law for inf-convolution of convex functions JO - Studia Mathematica PY - 1994 SP - 271 EP - 282 VL - 110 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-110-3-271-282/ DO - 10.4064/sm-110-3-271-282 LA - en ID - 10_4064_sm_110_3_271_282 ER -
Dariusz Zagrodny. The cancellation law for inf-convolution of convex functions. Studia Mathematica, Tome 110 (1994) no. 3, pp. 271-282. doi: 10.4064/sm-110-3-271-282
Cité par Sources :