Illumination bodies and affine surface area
Studia Mathematica, Tome 110 (1994) no. 3, pp. 257-269
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We show that the affine surface area as(∂K) of a convex body K in $ℝ^{n}$ can be computed as $as(∂K) = lim_{δ→0} d_{n} (vol_{n}(K^{δ}) - vol_{n}(K))/(δ^{2/(n+1)})$ where $d_{n}$ is a constant and $K^{δ}$ is the illumination body.
@article{10_4064_sm_110_3_257_269,
author = {Elisabeth Werner},
title = {Illumination bodies and affine surface area},
journal = {Studia Mathematica},
pages = {257--269},
publisher = {mathdoc},
volume = {110},
number = {3},
year = {1994},
doi = {10.4064/sm-110-3-257-269},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-110-3-257-269/}
}
TY - JOUR AU - Elisabeth Werner TI - Illumination bodies and affine surface area JO - Studia Mathematica PY - 1994 SP - 257 EP - 269 VL - 110 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-110-3-257-269/ DO - 10.4064/sm-110-3-257-269 LA - en ID - 10_4064_sm_110_3_257_269 ER -
Elisabeth Werner. Illumination bodies and affine surface area. Studia Mathematica, Tome 110 (1994) no. 3, pp. 257-269. doi: 10.4064/sm-110-3-257-269
Cité par Sources :