Illumination bodies and affine surface area
Studia Mathematica, Tome 110 (1994) no. 3, pp. 257-269

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We show that the affine surface area as(∂K) of a convex body K in $ℝ^{n}$ can be computed as $as(∂K) = lim_{δ→0} d_{n} (vol_{n}(K^{δ}) - vol_{n}(K))/(δ^{2/(n+1)})$ where $d_{n}$ is a constant and $K^{δ}$ is the illumination body.
DOI : 10.4064/sm-110-3-257-269

Elisabeth Werner 1

1
@article{10_4064_sm_110_3_257_269,
     author = {Elisabeth Werner},
     title = {Illumination bodies and affine surface area},
     journal = {Studia Mathematica},
     pages = {257--269},
     publisher = {mathdoc},
     volume = {110},
     number = {3},
     year = {1994},
     doi = {10.4064/sm-110-3-257-269},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-110-3-257-269/}
}
TY  - JOUR
AU  - Elisabeth Werner
TI  - Illumination bodies and affine surface area
JO  - Studia Mathematica
PY  - 1994
SP  - 257
EP  - 269
VL  - 110
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-110-3-257-269/
DO  - 10.4064/sm-110-3-257-269
LA  - en
ID  - 10_4064_sm_110_3_257_269
ER  - 
%0 Journal Article
%A Elisabeth Werner
%T Illumination bodies and affine surface area
%J Studia Mathematica
%D 1994
%P 257-269
%V 110
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-110-3-257-269/
%R 10.4064/sm-110-3-257-269
%G en
%F 10_4064_sm_110_3_257_269
Elisabeth Werner. Illumination bodies and affine surface area. Studia Mathematica, Tome 110 (1994) no. 3, pp. 257-269. doi: 10.4064/sm-110-3-257-269

Cité par Sources :