On the invertibility of isometric semigroup representations
Studia Mathematica, Tome 110 (1994) no. 3, pp. 235-250
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let T be a representation of a suitable abelian semigroup S by isometries on a Banach space. We study the spectral conditions which will imply that T(s) is invertible for each s in S. On the way we analyse the relationship between the spectrum of T, Sp(T,S), and its unitary spectrum $Sp_{u}(T,S)$. For $S = ℤ^{n}_{+}$ or $ℝ^{n}_{+}$, we establish connections with polynomial convexity.
Keywords:
semigroup, isometric representation, spectrum, polynomial convexity
Affiliations des auteurs :
C. J. K. Batty 1
@article{10_4064_sm_110_3_235_250,
author = {C. J. K. Batty},
title = {On the invertibility of isometric semigroup representations},
journal = {Studia Mathematica},
pages = {235--250},
publisher = {mathdoc},
volume = {110},
number = {3},
year = {1994},
doi = {10.4064/sm-110-3-235-250},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-110-3-235-250/}
}
TY - JOUR AU - C. J. K. Batty TI - On the invertibility of isometric semigroup representations JO - Studia Mathematica PY - 1994 SP - 235 EP - 250 VL - 110 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-110-3-235-250/ DO - 10.4064/sm-110-3-235-250 LA - en ID - 10_4064_sm_110_3_235_250 ER -
C. J. K. Batty. On the invertibility of isometric semigroup representations. Studia Mathematica, Tome 110 (1994) no. 3, pp. 235-250. doi: 10.4064/sm-110-3-235-250
Cité par Sources :