Weighted Orlicz space integral inequalities for the Hardy-Littlewood maximal operator
Studia Mathematica, Tome 110 (1994) no. 2, pp. 149-167
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Necessary and sufficient conditions are given for the Hardy-Littlewood maximal operator to be bounded on a weighted Orlicz space when the complementary Young function satisfies $Δ_2$. Such a growth condition is shown to be necessary for any weighted integral inequality to occur. Weak-type conditions are also investigated.
@article{10_4064_sm_110_2_149_167,
author = {S. Bloom},
title = {Weighted {Orlicz} space integral inequalities for the {Hardy-Littlewood} maximal operator},
journal = {Studia Mathematica},
pages = {149--167},
publisher = {mathdoc},
volume = {110},
number = {2},
year = {1994},
doi = {10.4064/sm-110-2-149-167},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-110-2-149-167/}
}
TY - JOUR AU - S. Bloom TI - Weighted Orlicz space integral inequalities for the Hardy-Littlewood maximal operator JO - Studia Mathematica PY - 1994 SP - 149 EP - 167 VL - 110 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-110-2-149-167/ DO - 10.4064/sm-110-2-149-167 LA - en ID - 10_4064_sm_110_2_149_167 ER -
%0 Journal Article %A S. Bloom %T Weighted Orlicz space integral inequalities for the Hardy-Littlewood maximal operator %J Studia Mathematica %D 1994 %P 149-167 %V 110 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm-110-2-149-167/ %R 10.4064/sm-110-2-149-167 %G en %F 10_4064_sm_110_2_149_167
S. Bloom. Weighted Orlicz space integral inequalities for the Hardy-Littlewood maximal operator. Studia Mathematica, Tome 110 (1994) no. 2, pp. 149-167. doi: 10.4064/sm-110-2-149-167
Cité par Sources :