Weighted Orlicz space integral inequalities for the Hardy-Littlewood maximal operator
Studia Mathematica, Tome 110 (1994) no. 2, pp. 149-167

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Necessary and sufficient conditions are given for the Hardy-Littlewood maximal operator to be bounded on a weighted Orlicz space when the complementary Young function satisfies $Δ_2$. Such a growth condition is shown to be necessary for any weighted integral inequality to occur. Weak-type conditions are also investigated.
DOI : 10.4064/sm-110-2-149-167

S. Bloom 1

1
@article{10_4064_sm_110_2_149_167,
     author = {S. Bloom},
     title = {Weighted {Orlicz} space integral inequalities for the {Hardy-Littlewood} maximal operator},
     journal = {Studia Mathematica},
     pages = {149--167},
     publisher = {mathdoc},
     volume = {110},
     number = {2},
     year = {1994},
     doi = {10.4064/sm-110-2-149-167},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-110-2-149-167/}
}
TY  - JOUR
AU  - S. Bloom
TI  - Weighted Orlicz space integral inequalities for the Hardy-Littlewood maximal operator
JO  - Studia Mathematica
PY  - 1994
SP  - 149
EP  - 167
VL  - 110
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-110-2-149-167/
DO  - 10.4064/sm-110-2-149-167
LA  - en
ID  - 10_4064_sm_110_2_149_167
ER  - 
%0 Journal Article
%A S. Bloom
%T Weighted Orlicz space integral inequalities for the Hardy-Littlewood maximal operator
%J Studia Mathematica
%D 1994
%P 149-167
%V 110
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-110-2-149-167/
%R 10.4064/sm-110-2-149-167
%G en
%F 10_4064_sm_110_2_149_167
S. Bloom. Weighted Orlicz space integral inequalities for the Hardy-Littlewood maximal operator. Studia Mathematica, Tome 110 (1994) no. 2, pp. 149-167. doi: 10.4064/sm-110-2-149-167

Cité par Sources :