Note on semigroups generated by positive Rockland operators on graded homogeneous groups
Studia Mathematica, Tome 110 (1994) no. 2, pp. 115-126
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let L be a positive Rockland operator of homogeneous degree d on a graded homogeneous group G and let $p_t$ be the convolution kernels of the semigroup generated by L. We prove that if τ(x) is a Riemannian distance of x from the unit element, then there are constants c>0 and C such that $|p_1(x)| ≤ Cexp(-cτ(x)^{d/(d-1)})$. Moreover, if G is not stratified, more precise estimates of $p_1$ at infinity are given.
@article{10_4064_sm_110_2_115_126,
author = {Jacek Dziuba\'nski},
title = {Note on semigroups generated by positive {Rockland} operators on graded homogeneous groups},
journal = {Studia Mathematica},
pages = {115--126},
publisher = {mathdoc},
volume = {110},
number = {2},
year = {1994},
doi = {10.4064/sm-110-2-115-126},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-110-2-115-126/}
}
TY - JOUR AU - Jacek Dziubański TI - Note on semigroups generated by positive Rockland operators on graded homogeneous groups JO - Studia Mathematica PY - 1994 SP - 115 EP - 126 VL - 110 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-110-2-115-126/ DO - 10.4064/sm-110-2-115-126 LA - en ID - 10_4064_sm_110_2_115_126 ER -
%0 Journal Article %A Jacek Dziubański %T Note on semigroups generated by positive Rockland operators on graded homogeneous groups %J Studia Mathematica %D 1994 %P 115-126 %V 110 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm-110-2-115-126/ %R 10.4064/sm-110-2-115-126 %G en %F 10_4064_sm_110_2_115_126
Jacek Dziubański. Note on semigroups generated by positive Rockland operators on graded homogeneous groups. Studia Mathematica, Tome 110 (1994) no. 2, pp. 115-126. doi: 10.4064/sm-110-2-115-126
Cité par Sources :