When is there a discontinuous homomorphism from L¹(G)?
Studia Mathematica, Tome 110 (1994) no. 1, pp. 97-104

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let A be an A*-algebra with enveloping C*-algebra C*(A). We show that, under certain conditions, a homomorphism from C*(A) into a Banach algebra is continuous if and only if its restriction to A is continuous. We apply this result to the question in the title.
DOI : 10.4064/sm-110-1-97-104

Volker Runde 1

1
@article{10_4064_sm_110_1_97_104,
     author = {Volker Runde},
     title = {When is there a discontinuous homomorphism from {L{\textonesuperior}(G)?}},
     journal = {Studia Mathematica},
     pages = {97--104},
     publisher = {mathdoc},
     volume = {110},
     number = {1},
     year = {1994},
     doi = {10.4064/sm-110-1-97-104},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-110-1-97-104/}
}
TY  - JOUR
AU  - Volker Runde
TI  - When is there a discontinuous homomorphism from L¹(G)?
JO  - Studia Mathematica
PY  - 1994
SP  - 97
EP  - 104
VL  - 110
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-110-1-97-104/
DO  - 10.4064/sm-110-1-97-104
LA  - en
ID  - 10_4064_sm_110_1_97_104
ER  - 
%0 Journal Article
%A Volker Runde
%T When is there a discontinuous homomorphism from L¹(G)?
%J Studia Mathematica
%D 1994
%P 97-104
%V 110
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-110-1-97-104/
%R 10.4064/sm-110-1-97-104
%G en
%F 10_4064_sm_110_1_97_104
Volker Runde. When is there a discontinuous homomorphism from L¹(G)?. Studia Mathematica, Tome 110 (1994) no. 1, pp. 97-104. doi: 10.4064/sm-110-1-97-104

Cité par Sources :