When is there a discontinuous homomorphism from L¹(G)?
Studia Mathematica, Tome 110 (1994) no. 1, pp. 97-104
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let A be an A*-algebra with enveloping C*-algebra C*(A). We show that, under certain conditions, a homomorphism from C*(A) into a Banach algebra is continuous if and only if its restriction to A is continuous. We apply this result to the question in the title.
@article{10_4064_sm_110_1_97_104,
author = {Volker Runde},
title = {When is there a discontinuous homomorphism from {L{\textonesuperior}(G)?}},
journal = {Studia Mathematica},
pages = {97--104},
publisher = {mathdoc},
volume = {110},
number = {1},
year = {1994},
doi = {10.4064/sm-110-1-97-104},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-110-1-97-104/}
}
TY - JOUR AU - Volker Runde TI - When is there a discontinuous homomorphism from L¹(G)? JO - Studia Mathematica PY - 1994 SP - 97 EP - 104 VL - 110 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-110-1-97-104/ DO - 10.4064/sm-110-1-97-104 LA - en ID - 10_4064_sm_110_1_97_104 ER -
Volker Runde. When is there a discontinuous homomorphism from L¹(G)?. Studia Mathematica, Tome 110 (1994) no. 1, pp. 97-104. doi: 10.4064/sm-110-1-97-104
Cité par Sources :