On the maximal function for rotation invariant measures in $ℝ^{n}$
Studia Mathematica, Tome 110 (1994) no. 1, pp. 9-17

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Given a positive measure μ in $ℝ^n$, there is a natural variant of the noncentered Hardy-Littlewood maximal operator $M_{μ}f(x) = sup_{x ∈ B} 1/μ(B) ʃ_{B} |f|dμ$, where the supremum is taken over all balls containing the point x. In this paper we restrict our attention to rotation invariant, strictly positive measures μ in $ℝ^n$. We give some necessary and sufficient conditions for $M_μ$ to be bounded from $L^{1}(dμ)$ to $L^{1,∞}(dμ)$.
DOI : 10.4064/sm-110-1-9-17
Keywords: maximal operators, weak type estimates

Ana M. Vargas 1

1
@article{10_4064_sm_110_1_9_17,
     author = {Ana M. Vargas},
     title = {On the maximal function for rotation invariant measures in $\ensuremath{\mathbb{R}}^{n}$},
     journal = {Studia Mathematica},
     pages = {9--17},
     publisher = {mathdoc},
     volume = {110},
     number = {1},
     year = {1994},
     doi = {10.4064/sm-110-1-9-17},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-110-1-9-17/}
}
TY  - JOUR
AU  - Ana M. Vargas
TI  - On the maximal function for rotation invariant measures in $ℝ^{n}$
JO  - Studia Mathematica
PY  - 1994
SP  - 9
EP  - 17
VL  - 110
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-110-1-9-17/
DO  - 10.4064/sm-110-1-9-17
LA  - en
ID  - 10_4064_sm_110_1_9_17
ER  - 
%0 Journal Article
%A Ana M. Vargas
%T On the maximal function for rotation invariant measures in $ℝ^{n}$
%J Studia Mathematica
%D 1994
%P 9-17
%V 110
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-110-1-9-17/
%R 10.4064/sm-110-1-9-17
%G en
%F 10_4064_sm_110_1_9_17
Ana M. Vargas. On the maximal function for rotation invariant measures in $ℝ^{n}$. Studia Mathematica, Tome 110 (1994) no. 1, pp. 9-17. doi: 10.4064/sm-110-1-9-17

Cité par Sources :