On the maximal function for rotation invariant measures in $ℝ^{n}$
Studia Mathematica, Tome 110 (1994) no. 1, pp. 9-17
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Given a positive measure μ in $ℝ^n$, there is a natural variant of the noncentered Hardy-Littlewood maximal operator $M_{μ}f(x) = sup_{x ∈ B} 1/μ(B) ʃ_{B} |f|dμ$, where the supremum is taken over all balls containing the point x. In this paper we restrict our attention to rotation invariant, strictly positive measures μ in $ℝ^n$. We give some necessary and sufficient conditions for $M_μ$ to be bounded from $L^{1}(dμ)$ to $L^{1,∞}(dμ)$.
Keywords:
maximal operators, weak type estimates
Affiliations des auteurs :
Ana M. Vargas 1
@article{10_4064_sm_110_1_9_17,
author = {Ana M. Vargas},
title = {On the maximal function for rotation invariant measures in $\ensuremath{\mathbb{R}}^{n}$},
journal = {Studia Mathematica},
pages = {9--17},
publisher = {mathdoc},
volume = {110},
number = {1},
year = {1994},
doi = {10.4064/sm-110-1-9-17},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-110-1-9-17/}
}
TY - JOUR
AU - Ana M. Vargas
TI - On the maximal function for rotation invariant measures in $ℝ^{n}$
JO - Studia Mathematica
PY - 1994
SP - 9
EP - 17
VL - 110
IS - 1
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-110-1-9-17/
DO - 10.4064/sm-110-1-9-17
LA - en
ID - 10_4064_sm_110_1_9_17
ER -
Ana M. Vargas. On the maximal function for rotation invariant measures in $ℝ^{n}$. Studia Mathematica, Tome 110 (1994) no. 1, pp. 9-17. doi: 10.4064/sm-110-1-9-17
Cité par Sources :