Tauberian theorems for Cesàro summable double sequences
Studia Mathematica, Tome 110 (1994) no. 1, pp. 83-96
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
$(s_{jk}: j,k = 0,1,...)$ be a double sequence of real numbers which is summable (C,1,1) to a finite limit. We give necessary and sufficient conditions under which $(s_{jk})$ converges in Pringsheim's sense. These conditions are satisfied if $(s_{jk})$ is slowly decreasing in certain senses defined in this paper. Among other things we deduce the following Tauberian theorem of Landau and Hardy type: If $(s_{jk})$ is summable (C,1,1) to a finite limit and there exist constants $n_1 > 0$ and H such that $jk(s_{jk} - s_{j-1,k} - s_{j-1,k} + s_{j-1,k-1}) ≥ -H$, $j(s_{jk} - s_{j-1, k}) ≥ -H$ and $k(s_{jk} - s_{j,k-1}) ≥ -H$ whenever $j,k > n_1$, then $(s_{jk})$ converges. We always mean convergence in Pringsheim's sense. Our method is suitable to obtain analogous Tauberian results for double sequences of complex numbers or for those in an ordered linear space over the real numbers.
Keywords:
double sequence, convergence in Pringsheim's sense, summability (C, 1, 1), (C, 1, 0) and (C, 0, 1), one-sided Tauberian condition of Landau and Hardy type, slow decrease, ordered linear space
@article{10_4064_sm_110_1_83_96,
author = {Ferenc M\'oricz},
title = {Tauberian theorems for {Ces\`aro} summable double sequences},
journal = {Studia Mathematica},
pages = {83--96},
year = {1994},
volume = {110},
number = {1},
doi = {10.4064/sm-110-1-83-96},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-110-1-83-96/}
}
Ferenc Móricz. Tauberian theorems for Cesàro summable double sequences. Studia Mathematica, Tome 110 (1994) no. 1, pp. 83-96. doi: 10.4064/sm-110-1-83-96
Cité par Sources :