Continuous linear right inverses for convolution operators in spaces of real analytic functions
Studia Mathematica, Tome 110 (1994) no. 1, pp. 65-82
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We determine the convolution operators $T_μ := μ*$ on the real analytic functions in one variable which admit a continuous linear right inverse. The characterization is given by means of a slowly decreasing condition of Ehrenpreis type and a restriction of hyperbolic type on the location of zeros of the Fourier transform μ̂(z).
@article{10_4064_sm_110_1_65_82,
author = {Michael Langenbruch},
title = {Continuous linear right inverses for convolution operators in spaces of real analytic functions},
journal = {Studia Mathematica},
pages = {65--82},
publisher = {mathdoc},
volume = {110},
number = {1},
year = {1994},
doi = {10.4064/sm-110-1-65-82},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-110-1-65-82/}
}
TY - JOUR AU - Michael Langenbruch TI - Continuous linear right inverses for convolution operators in spaces of real analytic functions JO - Studia Mathematica PY - 1994 SP - 65 EP - 82 VL - 110 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-110-1-65-82/ DO - 10.4064/sm-110-1-65-82 LA - en ID - 10_4064_sm_110_1_65_82 ER -
%0 Journal Article %A Michael Langenbruch %T Continuous linear right inverses for convolution operators in spaces of real analytic functions %J Studia Mathematica %D 1994 %P 65-82 %V 110 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm-110-1-65-82/ %R 10.4064/sm-110-1-65-82 %G en %F 10_4064_sm_110_1_65_82
Michael Langenbruch. Continuous linear right inverses for convolution operators in spaces of real analytic functions. Studia Mathematica, Tome 110 (1994) no. 1, pp. 65-82. doi: 10.4064/sm-110-1-65-82
Cité par Sources :