Continuous linear right inverses for convolution operators in spaces of real analytic functions
Studia Mathematica, Tome 110 (1994) no. 1, pp. 65-82

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We determine the convolution operators $T_μ := μ*$ on the real analytic functions in one variable which admit a continuous linear right inverse. The characterization is given by means of a slowly decreasing condition of Ehrenpreis type and a restriction of hyperbolic type on the location of zeros of the Fourier transform μ̂(z).
DOI : 10.4064/sm-110-1-65-82

Michael Langenbruch 1

1
@article{10_4064_sm_110_1_65_82,
     author = {Michael Langenbruch},
     title = {Continuous linear right inverses for convolution operators in spaces of real analytic functions},
     journal = {Studia Mathematica},
     pages = {65--82},
     publisher = {mathdoc},
     volume = {110},
     number = {1},
     year = {1994},
     doi = {10.4064/sm-110-1-65-82},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-110-1-65-82/}
}
TY  - JOUR
AU  - Michael Langenbruch
TI  - Continuous linear right inverses for convolution operators in spaces of real analytic functions
JO  - Studia Mathematica
PY  - 1994
SP  - 65
EP  - 82
VL  - 110
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-110-1-65-82/
DO  - 10.4064/sm-110-1-65-82
LA  - en
ID  - 10_4064_sm_110_1_65_82
ER  - 
%0 Journal Article
%A Michael Langenbruch
%T Continuous linear right inverses for convolution operators in spaces of real analytic functions
%J Studia Mathematica
%D 1994
%P 65-82
%V 110
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-110-1-65-82/
%R 10.4064/sm-110-1-65-82
%G en
%F 10_4064_sm_110_1_65_82
Michael Langenbruch. Continuous linear right inverses for convolution operators in spaces of real analytic functions. Studia Mathematica, Tome 110 (1994) no. 1, pp. 65-82. doi: 10.4064/sm-110-1-65-82

Cité par Sources :