Weighted $L_{Φ}$ integral inequalities for operators of Hardy type
Studia Mathematica, Tome 110 (1994) no. 1, pp. 35-52
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Necessary and sufficient conditions are given on the weights t, u, v, and w, in order for $Φ_2^{-1} (ʃΦ_2(w(x)|Tf(x)|)t(x)dx) ≤ Φ_{1}^{-1}(ʃΦ_{1}(Cu(x)|f(x)|)v(x)dx)$ to hold when $Φ_1$ and $Φ_2$ are N-functions with $Φ_2∘Φ_{1}^{-1}$ convex, and T is the Hardy operator or a generalized Hardy operator. Weak-type characterizations are given for monotone operators and the connection between weak-type and strong-type inequalities is explored.
@article{10_4064_sm_110_1_35_52,
author = {Steven Bloom},
title = {Weighted $L_{\ensuremath{\Phi}}$ integral inequalities for operators of {Hardy} type},
journal = {Studia Mathematica},
pages = {35--52},
year = {1994},
volume = {110},
number = {1},
doi = {10.4064/sm-110-1-35-52},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-110-1-35-52/}
}
Steven Bloom. Weighted $L_{Φ}$ integral inequalities for operators of Hardy type. Studia Mathematica, Tome 110 (1994) no. 1, pp. 35-52. doi: 10.4064/sm-110-1-35-52
Cité par Sources :