Weighted $L_{Φ}$ integral inequalities for operators of Hardy type
Studia Mathematica, Tome 110 (1994) no. 1, pp. 35-52 Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

Necessary and sufficient conditions are given on the weights t, u, v, and w, in order for $Φ_2^{-1} (ʃΦ_2(w(x)|Tf(x)|)t(x)dx) ≤ Φ_{1}^{-1}(ʃΦ_{1}(Cu(x)|f(x)|)v(x)dx)$ to hold when $Φ_1$ and $Φ_2$ are N-functions with $Φ_2∘Φ_{1}^{-1}$ convex, and T is the Hardy operator or a generalized Hardy operator. Weak-type characterizations are given for monotone operators and the connection between weak-type and strong-type inequalities is explored.
@article{10_4064_sm_110_1_35_52,
     author = {Steven Bloom},
     title = {Weighted $L_{\ensuremath{\Phi}}$ integral inequalities for operators of {Hardy} type},
     journal = {Studia Mathematica},
     pages = {35--52},
     year = {1994},
     volume = {110},
     number = {1},
     doi = {10.4064/sm-110-1-35-52},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-110-1-35-52/}
}
TY  - JOUR
AU  - Steven Bloom
TI  - Weighted $L_{Φ}$ integral inequalities for operators of Hardy type
JO  - Studia Mathematica
PY  - 1994
SP  - 35
EP  - 52
VL  - 110
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-110-1-35-52/
DO  - 10.4064/sm-110-1-35-52
LA  - en
ID  - 10_4064_sm_110_1_35_52
ER  - 
%0 Journal Article
%A Steven Bloom
%T Weighted $L_{Φ}$ integral inequalities for operators of Hardy type
%J Studia Mathematica
%D 1994
%P 35-52
%V 110
%N 1
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-110-1-35-52/
%R 10.4064/sm-110-1-35-52
%G en
%F 10_4064_sm_110_1_35_52
Steven Bloom. Weighted $L_{Φ}$ integral inequalities for operators of Hardy type. Studia Mathematica, Tome 110 (1994) no. 1, pp. 35-52. doi: 10.4064/sm-110-1-35-52

Cité par Sources :