Outer factorization of operator valued weight functions on the torus
Studia Mathematica, Tome 110 (1994) no. 1, pp. 19-34
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
An exact criterion is derived for an operator valued weight function $W(e^{is},e^{it})$ on the torus to have a factorization $W(e^{is},e^{it}) = Φ(e^{is},e^{it})*Φ(e^{is},e^{it})$, where the operator valued Fourier coefficients of Φ vanish outside of the Helson-Lowdenslager halfplane $Λ = {(m,n) ∈ ℤ^2: m ≥ 1} ∪ {(0,n): n ≥ 0}$, and Φ is "outer" in a related sense. The criterion is expressed in terms of a regularity condition on the weighted space $L^2(W)$ of vector valued functions on the torus. A logarithmic integrability test is also provided. The factor Φ is explicitly constructed in terms of Toeplitz operators and other structures associated with W. The corresponding version of Szegö's infimum is given.
Keywords:
outer factorization, Toeplitz operator, prediction theory, Szegö's infimum, multivariate stationary process
Affiliations des auteurs :
Ray Cheng 1
@article{10_4064_sm_110_1_19_34,
author = {Ray Cheng},
title = {Outer factorization of operator valued weight functions on the torus},
journal = {Studia Mathematica},
pages = {19--34},
publisher = {mathdoc},
volume = {110},
number = {1},
year = {1994},
doi = {10.4064/sm-110-1-19-34},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-110-1-19-34/}
}
TY - JOUR AU - Ray Cheng TI - Outer factorization of operator valued weight functions on the torus JO - Studia Mathematica PY - 1994 SP - 19 EP - 34 VL - 110 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-110-1-19-34/ DO - 10.4064/sm-110-1-19-34 LA - en ID - 10_4064_sm_110_1_19_34 ER -
Ray Cheng. Outer factorization of operator valued weight functions on the torus. Studia Mathematica, Tome 110 (1994) no. 1, pp. 19-34. doi: 10.4064/sm-110-1-19-34
Cité par Sources :