Remarques sur la formule sommatoire de Poisson
Studia Mathematica, Tome 109 (1994) no. 3, pp. 303-316
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
It is well known that the condition "f ∈ L¹ and f̂ ∈ L¹" is not sufficient to ensure the validity of the Poisson summation formula ∑f(k) = ∑f̂(k). We discuss here a stronger condition "$x^a f ∈ L^p$ and $ξ^b f̂ ∈ L^q$" and see for which values of a and b the condition is sufficient.
@article{10_4064_sm_109_3_303_316,
author = {Jean Pierre Kahane},
title = {Remarques sur la formule sommatoire de {Poisson}},
journal = {Studia Mathematica},
pages = {303--316},
publisher = {mathdoc},
volume = {109},
number = {3},
year = {1994},
doi = {10.4064/sm-109-3-303-316},
language = {fr},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-109-3-303-316/}
}
TY - JOUR AU - Jean Pierre Kahane TI - Remarques sur la formule sommatoire de Poisson JO - Studia Mathematica PY - 1994 SP - 303 EP - 316 VL - 109 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-109-3-303-316/ DO - 10.4064/sm-109-3-303-316 LA - fr ID - 10_4064_sm_109_3_303_316 ER -
Jean Pierre Kahane. Remarques sur la formule sommatoire de Poisson. Studia Mathematica, Tome 109 (1994) no. 3, pp. 303-316. doi: 10.4064/sm-109-3-303-316
Cité par Sources :